

# **DAIKIN** 10th REHVA WORLD CONGRESS

All Seasons





Martin Dieryckx Environment research center Daikin Europe NV



EU policies "20 - 20 - 20"



# How is policy translated ?







# **Energy facts in Europe**



Main portion (41%) of energy consumption is related to buildings

# →Energy Performance of Buildings directive

HVAC sector (33%) is largest energy consumer in the EU. Space heating and hot water heating are the major part while comfort cooling has a strong increase.

To minimise the impact, we require drastic Energy efficiency improvements for hot water heating, space heating and comfort cooling equipment.

# → Energy related product requirements in the EU







# Energy performance of buildings (EPBD) in the EU

Direction is set towards

# net Zero Energy Buildings (nZEB)

# &

# Scope is extended

# before: more than1000 m2

Now : all buildings



# Nearly Zero Energy Buildings

Level has to be defined by every member state

# Target newest EPBD : nearly Zero Energy Building (2020)







# DEFINITION "nearly zero energy building"

means a building that has a very high energy performance, determined in accordance with Annex I.

The <u>nearly zero or very low amount</u> of energy required should to a very significant extent be covered by energy from renewable sources, including renewable energy produced on-site or nearby

Annex I: The methodology shall be laid down taking into consideration at least the following aspects:

- (a) the following actual thermal characteristics of the building (including its internal partitions).
  - (i) thermal capacity; (ii) insulation; (iii) passive heating;
  - (iv) cooling elements; and (v) thermal bridges;
- (b) <u>heating</u> installation and <u>hot water</u> supply, including their insulation characteristics;
- (c) <u>air-conditioning</u> installations
- (d) natural and mechanical <u>ventilation</u>, which may include air-tightness
- (e) built-in **lighting** installation (mainly in the non-residential sector);
- (f) the design, positioning and orientation of the buildings, including outdoor climate;



# **Timing EPBD**

2015: certain percentage of the buildings should be 'nearly zero energy'  $\rightarrow$  shall be defined by the member states

2018: all new public buildings have to be 'nearly zero energy'

2020: all new buildings have to be 'nearly zero energy'

# General direction in view of EPBD

Better insulation of buildings
More tight buildings
Better orientation of buildings
Cower heating load, limited cooling load,
Enhanced ventilation/ purification to keep indoor air quality

High efficient ventilation/purification and hot water production including recovery techniques become more important



# COMPARISON HEATING LOADS AND HEATING SYSTEM





# What is the trend?

-Most important for business = customers decision



-Complex→ Customer perception of these factors will decide -Investment cost is always an important factor

 $\rightarrow$  Legal requirements and incentives to move towards LLCC.



# Heating Example



# "Daikin Altherma, the intelligent way to comfort"

2

3

# **10th REHVA WORLD CONGRESS**

#### **CAPACITY RANGE:**

- room heating : 5.7 16.0 kW
- domestic hot water: 150 300 l
- room cooling: 5.1 13.0 kW

COMPONENTS: 1 Outdoor unit (6 types) 2 Indoor unit = Hydrobox 3 Domestic hot water tank (optional)

EMITTERS 4 Fan Coils 5 LT radiators 6 Floor heating

Solar panel

4

6







concept explanation

### Layout of the product: apartment with indoor unit and outdoor unit.











# Eco-design for energy using products (EUP) in the EU

# EU target = Top runner on global level

# Energy label as driver

# Extended to energy related products (ERP)



# Commissions Energy (ENER) and Enterprise (ENTR)

| 1. boilers         | 10.Airconditioner<12kW | 20. Local room heating prod.                   | ENTR 6 airco and ventilation |
|--------------------|------------------------|------------------------------------------------|------------------------------|
| 2. waterheaters    | 11. motors, fans,      | 21. Central heat. prod hot air                 |                              |
| 3. PC              | 12. comm. Refriger.    | 22. ovens                                      |                              |
| 4. copiers         | 13. dom. Refriger      | 23. Hobs & grills                              |                              |
| 5. TV,             | 14. dishwashers        | 24. prof.washing machines, dryers, dishwashers |                              |
| 6. Stand by loss   | 15. Fossil fuel burner | 25. Non tertiary coffee mach.                  |                              |
| 7. Battery charger | 16. Laundry driers     | 26. Networked stand by loss                    |                              |
| 8. Office lights   | 17. Vacuum cleaners    | ENTR 1 refrigeration                           |                              |
| 9. Street lights   | 18. Set top boxes      | ENTR 2 transformers                            |                              |
|                    | 19. Domestic lighting  | ENTR 3 mulitmedia                              |                              |
|                    | Studies finished       | Ongoing                                        |                              |
| 0                  |                        |                                                | 31 May 2010 17               |

WUKLD CUNGRESS

ΙΟΠΙ







# EUP – lot 10 - cooling







# Highest efficiency in its segment









- Temperature control
- Humidity control
- Ventilation







# National targets for 2020











# Impact to the heat pump market



31 May 2010

















Energy Brainpool

thorsten.lenck@energybrainpool.com

November 12th, 2009

/lay 2010 29



# What role can the HVAC industry play ?

Adaptation of the electricity use to the intermitted electricity supply will become in important criteria for competitiveness in the market.

The smart Grid requires smart Consumers.

Building inertia can be considered as a huge energy battery

Heat pumps can provide efficient hot water production and thermal energy storage Intelligent use of the available electricity and energy storage technologies will become a key factor for HVAC systems.

-The most economic solution will be the winner







### 10th REHV

# **Energy-efficiencies**

In case of Residential A/C Commercial A/C



Calculation conditions: HFO1234yf A/C is modified to improve efficiency, such as an increase in the pipe size of heat exchanger.

Note: for cold climates CO2 shows good performance



0

### **10th REHVA WORLD CONGRESS**

# Total overview of candidates

| Nedo conference (Feb '10) : Daikin view for refrigerant candidates : |                    |                                           |                          |  |  |
|----------------------------------------------------------------------|--------------------|-------------------------------------------|--------------------------|--|--|
| Application                                                          | Exist. refrigerant | Possible new refrigerant                  |                          |  |  |
| MAC                                                                  | HFC134a            | HFO1234yf , CO <sub>2</sub>               |                          |  |  |
| Direct<br>expansion<br>AC                                            | HFC410A            | High outdoor<br>temperature,<br>warm area | HFC32<br>Other           |  |  |
|                                                                      |                    | Cold area                                 | HFC32<br>CO <sub>2</sub> |  |  |
| Positive<br>displacement<br>chiller                                  | HFC134a            | Large size                                | HFO1234yf                |  |  |
|                                                                      | HFC407C<br>HFC410A | Medium to small size                      | HFC32<br>Other           |  |  |
| Centrifugal water chiller                                            | HFC134a            | HFO1234yf                                 |                          |  |  |
| Water heater,<br>hot water<br>heating                                | HFC134a            | Hot water<br>heating                      | HFO1234yf                |  |  |
|                                                                      | HFC407C<br>HFC410A | Water heater & hot water heating          | HFC32<br>Other           |  |  |
|                                                                      | CO <sub>2</sub>    | Hot water supply only                     | CO <sub>2</sub>          |  |  |



# **DAIKIN** 10th REHVA WORLD CONGRESS

All Seasons





Martin Dieryckx Environment research center Daikin Europe NV