
A stochastic methodology is presented and 
applied to efficiently employ building simula-
tion tools in the risk management process. An 

actual Public Private Partnership (PPP) -project of an 
atrium in The Netherlands is used for risk treatment 
decision support. The application showed that a simple 
assessment approach could already provide guidance 
either towards potential treatment strategies or more 
complex assessment approaches. Components of the 
methodology consist of sensitivity and uncertainty 
analysis and risk evaluation.

Introduction
Risk can be defined as the product of two contrib-
uting factors: the probability of occurrence of a threat 
and its impact or consequence (de Wilde, 2012) 
(Munier,2014). Risk assessment of future behaviour 
of systems enables reduction of unwanted conditions 
leading, for instance, to less efficient operation of 
systems or undesired indoor climates.

A new design for a governmental office, in The 
Hague, has led to the need for assessment of perfor-
mance risks associated with the indoor climate of 
the large atria. As the project is developed according 
to a design, build, finance, maintain and operate 
(DBFMO) contract, assessment of risks in the design 
stage of this DBFMO-contract is crucial given the 
long-term responsibility.  Requirements, and related 
risks, towards the atrium refer to the installation 
performance and comfort. Large atria are complex 
environments. Their (risk) assessment nevertheless 
can be based on methods ranging from simple (e.g. 
rule of thumbs and traditional physical calcula-
tion methods) up to complex (numerical model-
ling). However, selecting the right method for the 
problem is not straightforward (Moosavi et al, 2014) 
(Morbitzer, 2003).  In some cases, increasing the level 
of complexity of the model may decrease the accuracy 
of the results, due to increasing uncertainties in the 
input data (Kolsaker, 1995). 

Performance Risk Assessment – 
Application Example for Large Atria

Risk assessment has an important issue in design practice for Public Private Partnership 
projects. However, the use of building simulation tools for risk analysis is not yet common 
practice. The paper presents a stochastic methodology to efficiently employ building 
simulation tools in the risk management process. An application example shows its potential.
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The main objective of this research therefore was to 
support the selection of the appropriate building simu-
lation tool for the risk assessment. The atrium case is 
used as a means to develop the method.

Methodology 
Figure 1 presents the developed performance risk 
management framework. It originates from the frame-
work as proposed by ISO 31000 (2009a, 2009b). Risk 
identification is the starting point for the analysis. 
It requires the definition of the Key Performance 
Indicator (KPI) that reflects the risk, and the variables 
and its input parameters that affect the KPI. The risk 
encompasses two factors: Consequence and Probability. 
Consequences often can be defined in terms of (extra) 
costs or penalties. In PPP-projects penalties (money) 
generally will be the consequence of not fulfilling 
the requirements agreed on. The probability of a risk 
generally is harder to quantify, as deterministic models 
often are not applicable, exact values for the input 
parameters in time and space are usually unknown. 
To quantify this uncertainty, and with that the prob-
ability (e.g., % chance), reference has to be made to 
stochastic models.

The stochastic method selected for the uncertainty 
analysis is the Monte Carlo method. This method 
gives the probability distribution of possible results by 
running a simulation model for a number of scenarios 
and randomly selecting a different set of values from 
the uncertainty ranges of the input parameters. The 
number of scenarios depends on the uncertainty ranges, 

the model and the amount of parameters. To reduce the 
required computing time in case of large numbers of 
scenarios and if large simulation models are required 
Latin hypercube sampling (LHS) can be applied to 
arrive at a representative probability distribution with 
less effort (van Goch, 2011) (Hoes, 2007) (de Wit, 
2001). Uncertainty analysis gives insight into the influ-
ence of the whole parameter set on the risk probability. 

Sensitivity analysis can provide additional knowledge on 
the most influential input parameters. This knowledge 
can help in focussing on the treatment to reduce the 
risk most effectively or identify the need to analyse the 
effect of an input parameter at a more detailed (simula-
tion) level. In this work Monte-Carlo simulation in 
combination with linear regression analysis is applied. 
Standardised regression coefficients (SRC) are obtained 
to quantify the changes of the input parameters relative 
to the output (Manache and Melching, 2008) (Houben 
et al, 2010). The input parameter with the largest SRC 
has the most influence on the output.

Risk Evaluation assesses the combined consequences 
and probability. The outcome is compared to what is 
regarded Acceptable. If the uncertainty in the analysis is 
too large further analysis is required. Outcomes from 
the sensitivity analysis then can be used to determine 
whether the current model applied requires more 
detailed information or a new assessment should be 
chosen that allows more variables to be included in 
the analysis. In both ways complexity of the analysis is 
increased (Increase complexity; Figure 1). 

Figure 2 presents a visualization of 
a generic example of increasing the 
complexity of the risk evaluation in the 
two directions identified.

Application
The presented methodology is applied 
on the DBFMO-case located in centre 
of The Hague. The case consists of six 
atria which have been designed in 1993 
as a means to allow office windows to be 
opened while blocking noise and wind 
from the immediate surrounding. The 
atrium is renovated. For part of the atria 
the indoor thermal requirements decreased 
(i.e. lower temperatures allowed, till 3°C) 
while keeping the original atrium façade 
in place. The office building façade on the 
other hand was upgraded to have better 
insulation and air tightness.Figure 1. Performance risk management framework.
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For the atrium case, one risk identified was the poten-
tial fogging of the atrium windows due to condensation 
and potential of dripping of water from the ceiling and 
façade. The risk referred to the visual comfort and the 
building reputation, with surface temperature and rela-
tive humidity level as key variables for assessing the 
condensation risk. In the original design condensation 
hours were estimated at approximately 20  hours per 
year (minimum indoor temperature atrium 12°C; 
Perquin, and Wapenaar, 1991)

The possible consequences of condensation, comfort 
and reputation, can be quantified in penalties. Similar 
penalties are in place for other rooms in the case 
investigated, e.g., €200 for each hour indoor thermal 
requirements are not met for more than 12 hours. No 
values were specified for the investigated condensation 
risk. Therefore, an assumption was made with an incre-
ment in the penalty in case of consecutive condensation 

hours (5 €/h for 1 hour to 40 €/h for 5 consecutive 
hours or more).

Figure 3 presents the input parameters and variables 
that relate to the condensation risk. 

The first approach (model M1) for assessing the prob-
ability of the risk would assume the simplest model 
feasible for the case at hand. In this case a steady-state 
one-dimensional heat transfer model was chosen where 
only the atrium façade was modelled. The Monte Carlo 
method is applied where, apart from the weather data 
for the location and the façade thermal resistance, 
ranges for the boundary conditions (Figure 3) were 
assumed wide and uniformly distributed. Matlab was 
used for the calculations. Given the simplicity of the 
model LHS is not required in this case and convergence 
of the solution was assessed by increasing the number 
of scenarios to be calculated. 

Figure 3. Identification of 
condensation parameters.

Figure 2. Two ways to increase 
complexity (generic example).
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Results of the analysis are shown in Figure 4a-c. 
Figure 4d presents examples of the effect of treating 
individual input parameters (from regression analysis) 
on the number of condensation hours.

If the condensation risk is unacceptable more 
complexity in the model can be introduced, either by 
increasing the level of detail of the input parameters or 
by introducing additional variables (Figure 2). For the 

practical case the moisture release was most sensitive. 
Moisture contribution to the atrium is obtained from 
(humid) airflow from the offices into the atrium. This 
was assessed by assuming an airflow rate with presumed 
humidity level from the office into the atrium (model 
M2). Again ranges and a uniform distribution were 
assumed for these two parameters. As originally a steady-
state approach was assumed an additional variable 
‘time’ was introduced. For these calculations TRNSYS 

Figure 4. Overview of outcomes for model M1 of the application.

d. Probability of condensation hours per year for different risk 
treatments. M1(Med= 290, σ= 516), Moisture release reduction 
25% (Med= 133, σ=346) and 50% (Med= 44, σ= 177). Minimum 
Temperature of atria increase by 2°C (Med= 174, σ= 474) and 
by 4°C (Med= 120, σ=407). Surface temperature increase by 
1°C (Med= 22, σ= 329).

c. Risk level condensation simulated with simple Matlab (M1) 
model. M1 (Med= €5,967, σ= €17,095).

b. Frequency of consecutive hours of condensation per year. 
The outliers go up to 490 consecutive hours.

a. Probability of condensation hours per year during office 
hours. Including validation and verification. Original situation 
(Med= 19, σ=241), New design 10.000 (Med= 290, σ= 516), 
New design (Med= 295, σ= 516).
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was used (model T1). Due to compu-
tation time now LHS is introduced in 
the analysis to reduce the number of 
scenarios required. With 250 scenarios 
in this case representative results were 
obtained. In addition, this model was 
expanded with the extra parameters as 
identified for model M2 (Model T2). 
The latter model also included the heat 
flow into the atrium, which was not 
considered for model M2. 

Figure 5 compares the outcomes 
(condensation hours) for the four 
models.

The effect of (thermal) buffering in the 
transient case is visible in the boxplot 
outcomes for model T1 compared to 
the M1 model. The M2 model indicates 
a reduced but skewed distribution as 
maximum moisture release is now deter-
mined by two input parameters. Finally, the T2 model 
shows the important aspect of taking the heat transfer 
from the offices into the model complexity as well. The 
T2 model simulates an average atrium temperature of 
13.2°C compared to 11.9°C for the T1 model. The 
Matlab models only focus on moisture transfer. 

Discussion and conclusion
The application presents an example of the functioning 
of the model developed. Risk assessment and decision 
support for treatment selection are useful outcomes in 

the design process. The application example however did 
show the importance of providing correct assumptions on 
the ranges that may be assumed for the input parameters 
under investigation. Though not easy, this is a critical 
aspect of the methodology. Nevertheless, the stochastic 
method and combined sensitivity analysis provide means 
to visualize this effect and act on it to reduce the risk. In 
a deterministic method this may be much more difficult 
to capture. Uncertainty of the result can be reduced effec-
tively by focussing on influential parameters during the 
selection of the more complex assessment approach. 

Figure 5. Probability of condensation hours per year for different assessment 
approaches. (Med= Median, σ= standard deviation) M1 (Med=290, σ= 516),  
T1 (Med= 409, σ= 386), M2 (Med= 135, σ= 436), T2 (Med=23, σ= 110).
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