Terms used to describe the performance of chillers, air conditioners and heat pumps

COLLECTED BY DR SANDRINE MARINHAS, EUROVENT CERTITA CERTIFICATION

While chillers, air conditioners and heat pumps used to be rated at one standard condition, a process is on its way for the development and generalisation of figures for seasonal values, which goal is to come closer to the behaviour of the units over the year in order to better represent its efficiency. We expose here as simply as possible the main terms for these units and the key equations.

Terms	Cooling mode	Heating mode	unit
reference design conditions			
reference temperature conditions cooling mode: 35°C dry bulb (24°C wet bulb) outdoor and 27°C dry bulb (19°C wet bulb) indoor	T _{designc}	T _{designh}	°C
heating: for average: -10°C, colder : -22°C and warmer: +2°C climates	-		
load or demand	Pa	Ph	kW
load of the building at certain temperature conditions	• 0	• "	
full load	Pdesigne	Pdosignh	kW
load at reference design conditions	uesigne	uesigini	
part load ratio load divided by the full load	– PLR		%
capacity	D0		
capacity a unit can deliver at certain conditions			
capacity ratio			
load divided by the declared capacity			
bin hours	h		
duration at a given temperature for a specific location	– n _j		n
bivalent temperature (CR=100%)		-	•0
lowest outdoor temperature where capacity is equal to the load		bivalent	
operation limit temperature		_	
lowest outdoor temperature where the unit still delivers capacity	m	T _{oL}	°C
reference annual demand(s)	Qc	Q _h	kWh
representative annual demand(s)			-
emiciency (energy emiciency ratio and coefficient of performance)	EER	СОР	
capacity divided by the effective power input			kVV/
	EED	COD	KVV
al part road, at conditions of EN 14625 (degraded for fixed stage units)	EERj	COPj	
supplementary electric beater with a COP of 1	-	elbu	kW
thermostat off			<u> </u>
corresponding to the hours with no load	то		
standby			+
unit partially switched off but reactivable by a control device or timer	sb		
off			
unit completely switched off	off		
crankcase heater (to limit refrigerant concentration in oil at compressor start)			
where a crankcase heater is activated	СК		
auxiliary power consumptions	TO (1) (1)		
$\sum h_{aux} \cdot P_{aux} = h_{TO} \cdot P_{TO} + h_{sb} \cdot P_{sb} + h_{CK} \cdot P_{CK} + h_{off} \cdot P_{off}$	ι U, SD, ΟΠ, CK		KVVN
degradation coefficient for fixed stage units (same equations for COPj)	Cc / Cd		0/
efficiency loss due to the cycling of respectively chillers and ACs			/0
$EER_{j} = EER. \frac{CR}{c_{c}.CR+(1-c_{c})}; EER_{j} = EER. (1 - C_{d}. (1 - CR)) = EER. (Part Load Factor)$			kW/ kW
reference seasonal efficiency [reference: EN 14825, 2013]			
seasonal efficiency calculated for the reference annual demand			
$SEER = \frac{Q_c}{\frac{Q_c}{\sum h_j P_{c,j}} + \sum h_{aux} \cdot P_{aux}}; SCOP = \frac{Q_h}{\frac{Q_h}{\frac{\sum h_j P_{c,j}}{(P_{x,j} - e h_{x,j})}} + \sum h_{aux} \cdot P_{aux}}$	SEER	SCOP	kWh
$\frac{\sum h_j \left(\frac{z_{ij}}{EER_j}\right)}{\sum h_j \left(\frac{z_{ij}}{COP_j} + elbu_j\right)}$			
active seasonal efficiency	SEERon	SCOPon	kWh/
			KVVN
European seasonal energy emiciency ratio [reference: Eurovent Certification, 2008]			kWh/
Antecedent term used for SEEK before European standard was issued	ESEER	-	kWh
ESEEK = U.U3.EER _{100%} +U.33.EER _{75%} +0.41.EER _{50%} +0.23.EER _{25%}			<u> </u>
integrated part load value [reference AHRI, 1998] (EER in kW/Ton)			k\///
First equivalent to ESEER, with weighting coefficients related to the United States	IPLV	-	Ton
$IPLV = 0.01.EER_{100\%} + 0.42.EER_{75\%} + 0.45.EER_{50\%} + 0.12.EER_{25\%}$			