Use of REHVA Guidebook Power Point Presentations

• This Power Point Presentation can be freely used for training purposes by REHVA members.
• It is prepared by the main author to the REHVA Guidebook.
• Please refer the original author always when making the presentation.
• Inform REHVA secretariat each time the presentation is used: info@rehva.eu
Chilled Beam Application Guidebook

Maija Virta (ed.)
David Butler
Jonas Gräslund
Jaap Hogeling
Erik Lund Kristiansen
Mika Reinikainen
Gunnar Svensson
Chilled Beam Application Guidebook

- **History of chilled beams:**
 - Developed in Scandinavia in the middle of 1980’s
 - Rapidly spread all over the Europe in the end of 1990’s
 - Some installations in USA, Far East, etc.

- **Chilled beam systems are primarily used for**
 - cooling,
 - heating
 - ventilating

 spaces, where good indoor environmental quality and individual space control are appreciated.

- **Chilled beam systems are dedicated outdoor air systems to be applied primarily in spaces where internal humidity loads are moderate.**
This guidebook is aimed at consulting engineers and contractors, who want to design and execute good chilled beam systems, and facility owners, who want to develop life cycle cost efficient buildings and comfortable occupied spaces for people.

This book provides tools and guidance to achieve good indoor climate in the space using chilled beam technology, to select chilled beams and other required components and to design the air and water distribution system. It also presents some case studies, where chilled beams are used.
LIST OF CONTENTS:

FOREWORD
WORK GROUP
REVIEWERS
ACKNOWLEDGEMENTS
TERMINOLOGY, SYMBOLS AND UNITS

1 CHILLED BEAM COOLING AND HEATING IN A NUTSHELL

2 THEORETICAL BACKGROUND
2.1 HEAT TRANSFER
2.2 HEAT TRANSFER EFFICIENCY IN CHILLED BEAMS
2.3 ROOM CONTROL

3 ROOM AIR CONDITIONING SYSTEM SELECTION
3.1 OVERVIEW OF DIFFERENT ROOM UNITS
3.2 CONDITIONS FOR CHILLED BEAM APPLICATIO
3.3 LIFE CYCLE COST (LCC)
LIST OF CONTENTS:

4 CREATING GOOD INDOOR CLIMATE WITH CHILLED BEAMS

4.1 TYPES OF CHILLED BEAM SYSTEMS
4.2 COMFORTABLE INDOOR CLIMATE WITH CHILLED BEAM
4.3 ROOM CONSTRUCTION DESIGN REQUIREMENTS
4.4 POSITIONING OF CHILLED BEAMS
4.5 DEMONSTRATION OF INDOOR CLIMATE CONDITIONS

5 CHILLED BEAM SYSTEM DESIGN

5.1 COOLING WITH ACTIVE CHILLED BEAMS
5.2 HEATING WITH ACTIVE CHILLED BEAMS
5.3 ACTIVE CHILLED BEAMS IN HOT AND HUMID CLIMATES
5.4 PREVENTION OF CONDENSATION
5.5 AIR AND WATER DISTRIBUTION SYSTEMS
5.6 USE OF FREE COOLING AND SUSTAINABLE HEAT SOURCES
5.7 ROOM CONTROLS
5.8 DESIGN METHODOLOGY FOR CHILLED BEAM SYSTEM
LIST OF CONTENTS:

6 PRODUCT SELECTION

7 INSTALLATION AND COMMISSIONING
 7.1 INSTALLATION
 7.2 FLUSHING
 7.3 FILLING-UP AND VENTING THE SYSTEM
 7.4 COMMISSIONING

8 RUNNING OF CHILLED BEAM SYSTEM
 8.1 MAINTENANCE AND REPLACEMENT
 8.2 ESSENTIAL ISSUES IN BEAM OPERATION

9 CASE STUDIES

10 REFERENCES
Chilled Beam Application

• The chilled beam system promotes excellent thermal comfort, energy conservation and efficient use of space due to the high heat capacity of water used as heat transfer medium.

• The operation principle of the system is simple and trouble-free. The high temperature cooling and low temperature heating maximise the opportunity for free cooling and heating.

• Typical applications are cellular and open plans offices, hotel rooms, hospital wards, retail shops, bank halls etc.
Room Air Conditioning System Selection

• **Chilled beams provides benefits in life cycle costs:**
 • Low maintenance cost
 • Good energy efficiency
 • Free cooling possible in cold and temperate climate

• **Chilled beams system is a hygienic system**
 • No filters to be changed or cleaning of drain pans for condensate
 • Easy cleaning of coils and surfaces, only once in every 5 years

• **Chilled beams operate with a dry cooling coil**
 • No condensate collection system
 • Primary air should be dehumidified in the air handling unit and/or
 • Control of water temperatures is needed to avoid condensation
Building Conditions

- Cooling demand in the space typically less than 80 W/floor-m² (max 120 W/floor-m²)

- Heating demand less than 40 W/floor-m²

- Limited infiltration through building envelope

- Special attention to the building management system if windows are openable
Chilled Beam Operation Principle

Passive Beam

Active Beam
Chilled Beam Operation

1. Primary air (dehumidificated outdoor air) supply into supply air chamber.
2. Primary air is supplied through small nozzles.
3. Primary air supply induces room air to be re-circulated through the heat exchanger of the chilled beam.
4. Re-circulated room air and the primary air are mixed prior to diffusion in the space.
5. Cold water connection.
Federation of European Heating, Ventilation and Air-conditioning Associations
Typical Chilled Beam Installation

- Positioning of chilled beams influence the comfort conditions in the space
- Module size influences the installation costs and opportunities for flexibility in future
- Try to use only a few different type of beams (type, length, nozzle size etc.) in order to make
 - the tendering process,
 - logistics on the construction site
 - maintenance of building easier
Position of Active Chilled Beams
Position of Passive Chilled Beams
Perimeter Chilled Beam
Benefits in Life Cycle Costs: maintenance

Fan coil in 300 rooms, 20-year life cycle:

- **Filter change:** €25/filter twice a year
 15 min to replace @ €20/hr
 € 300.000
 € 60.000
- **Cleaning of condensation system:** 3 times/year @ 15 min
 € 90.000
- **Motor replacement:** €200/motor
 2 h work @ €20/hr
 € 60.000
 € 12.000
- **Fan coil replacement:** € 1000/ unit
 € 150.000

Total
€ 672.000

Chilled beam in 300 rooms, 20-year life cycle:

- **Cleaning of chilled beam:**
 once in every 5 years á 15 min @ €20/hr
 € 6.000

Difference in maintenance and replacement costs
€ 666.000
Benefits in Life Cycle Costs: chiller efficiency
Benefits in Life Cycle Costs: free cooling and heating

• **Chilled beams are designed and selected to use higher operating temperatures than fan coil systems (14-18°C Vs 6-12°C), increasing the available free-cooling period:**
 - chilled water from the buffer vessel can be circulated through the cooling coil of the air-handling unit during free-cooling operation and heat is transmitted from the chilled water to the supply air
 - dry air coolers
 - cooling towers
 - ground cold energy storages

• **Chilled beam system is a low temperature (30-45°C) heating system:**
 - sustainable heat sources are easier to use
 - higher efficiency of the heating boiler is achieved
 - heat pump system is particularly suitable for heat generation due to its high efficiency at the low temperature levels
Creating Good Indoor Climate

• Cooling capacity to avoid draughts in the occupied zone:
 • active chilled beams is typically 250 W/m (max 350 W/m)
 • passive chilled beams 150 W/m (max 250 W/m)
• Heating capacity of active beams is typically 150 W/m
 • to create sufficient mixing between the supply air from the beam and the room air
• Window draught (radiation and downward air movement) in cold seasons is eliminated
• Operation is designed taking into account the conditions during seasons (winter, summer, intermediate season)
• An efficient control system is used
• Chilled beams are installed and placed correctly in the space
Creating Good Indoor Climate

- Be aware of increased risk of draught if cold air from chilled beams is supplied towards the cold window surface or directly down to the occupied zone.

- Chilled beams installed above the door can create draught problems if the internal loads near the window are strong enough to bend the air jet from the beam to the occupied zone.

- Passive and open active chilled beams installed in the suspended ceiling always require sufficiently large openings in the ceiling for the induced room air path.
Recommended Design Values

<table>
<thead>
<tr>
<th>Cooling and Heating</th>
<th>Cooling</th>
<th>Heating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optimum heat loads / losses</td>
<td>60...80 W/floor-m<sup>2</sup></td>
<td>25...35 W/floor-m<sup>2</sup></td>
</tr>
<tr>
<td>Maximum heat loads / losses</td>
<td>< 120 W/floor-m<sup>2</sup></td>
<td>< 50 W/floor-m<sup>2</sup></td>
</tr>
<tr>
<td>Specific capacity of passive beam above occupied zone</td>
<td>< 150 W/m</td>
<td>–</td>
</tr>
<tr>
<td>Specific capacity of passive beam outside occupied zone</td>
<td>< 250 W/m</td>
<td>–</td>
</tr>
<tr>
<td>Specific capacity of active beams (highest class of indoor climate)</td>
<td>< 250 W/m</td>
<td>< 150 W/m</td>
</tr>
<tr>
<td>Specific capacity of active beams (medium class of indoor climate)</td>
<td>< 350 W/m</td>
<td>< 150 W/m</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Supply air</th>
<th>Cooling</th>
<th>Heating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specific primary air flow rate of active beam</td>
<td>5...15 l/s,m</td>
<td>5...15 l/s,m</td>
</tr>
<tr>
<td>Supply air temperature</td>
<td>18...20°C</td>
<td>19...21°C</td>
</tr>
<tr>
<td>Pressure drop of active beam</td>
<td>30...120 Pa</td>
<td>30...120 Pa</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Room air</th>
<th>Cooling</th>
<th>Heating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference air temperature (air into the beam): active beam</td>
<td>Room air temp.</td>
<td>Room air temp. + 0...2°C</td>
</tr>
<tr>
<td>Reference air temperature (air into the beam): passive beam</td>
<td>Room air temp. + 0...2°C</td>
<td>–</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Inlet water</th>
<th>Cooling</th>
<th>Heating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water flow rate with pipe size of 15 mm (turbulent flow)</td>
<td>> 0.03...0.10 kg/s</td>
<td>> 0.03...0.10 kg/s</td>
</tr>
<tr>
<td>Water flow rate with pipe size of 10 mm (turbulent flow)</td>
<td>> 0.015...0.04 kg/s</td>
<td>> 0.015...0.04 kg/s</td>
</tr>
<tr>
<td>Inlet water temperature</td>
<td>14...18°C</td>
<td>30...45°C</td>
</tr>
<tr>
<td>Pressure drop</td>
<td>0.5...15 kPa</td>
<td>0.5...15 kPa</td>
</tr>
</tbody>
</table>
Chilled Beams in Cooling
Position of Active Chilled Beams Influences Room Air Velocities

<table>
<thead>
<tr>
<th>Door</th>
<th>3.6 m</th>
<th>2.4 m</th>
<th>1.5 m</th>
<th>0.6 m</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.8 m</td>
<td>0.21</td>
<td>0.11</td>
<td>0.10</td>
<td>0.12</td>
</tr>
<tr>
<td>1.5 m</td>
<td>0.10</td>
<td>0.08</td>
<td>0.12</td>
<td>0.08</td>
</tr>
<tr>
<td>1.1 m</td>
<td>0.15</td>
<td>0.09</td>
<td>0.09</td>
<td>0.10</td>
</tr>
<tr>
<td>0.6 m</td>
<td>0.17</td>
<td>0.16</td>
<td>0.15</td>
<td>0.07</td>
</tr>
<tr>
<td>0.1 m</td>
<td>0.21</td>
<td>0.21</td>
<td>0.27</td>
<td>0.34</td>
</tr>
</tbody>
</table>

Chilled Beam 12 l/s,m 25 W/m², 14 deg.C window maximum velocity values (m/s)

<table>
<thead>
<tr>
<th>Window</th>
<th>3.6 m</th>
<th>2.4 m</th>
<th>1.5 m</th>
<th>0.6 m</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.8 m</td>
<td>0.14</td>
<td>0.11</td>
<td>0.09</td>
<td>0.11</td>
</tr>
<tr>
<td>1.5 m</td>
<td>0.07</td>
<td>0.08</td>
<td>0.11</td>
<td>0.09</td>
</tr>
<tr>
<td>1.1 m</td>
<td>0.15</td>
<td>0.11</td>
<td>0.13</td>
<td>0.12</td>
</tr>
<tr>
<td>0.6 m</td>
<td>0.09</td>
<td>0.15</td>
<td>0.16</td>
<td>0.10</td>
</tr>
<tr>
<td>0.1 m</td>
<td>0.17</td>
<td>0.23</td>
<td>0.25</td>
<td>0.15</td>
</tr>
</tbody>
</table>

Room air velocities in the intermediate season with same beam installed either crosswise or lengthwise in the room.
Room Loads Influencing Throw Pattern

No internal load in the space

Room is occupied and the window surface is warm.
Chilled Beam System Design

- Design the chilled beam system based on real cooling requirements. Over design of the system makes it more expensive and decreases comfort.
Selection of Primary Air

- Primary air should be dehumidified in most cases

- **Airflow rate must be high enough to**
 - absorb the humidity generated in the space
 - fulfil the hygienic needs

- **Typical primary air volume is**
 - 1.5 – 3 l/s, floor-m2
 - 5 - 15 l/s, beam-m

- **Very high primary airflow rates increase the risk of draught in the occupied zone**
Management of Internal Moisture Loads

- **Management of internal latent loads in offices:**
 - Airflow rate 1.5 l/s/m²
 - 1 person / 10 m²
 - 60 g/h/person = 6 g/h/m² = 0.0017 g/s/m²
 - Humidity ratio differential between room air and supply air
 - \(dx = \frac{m}{(\rho_l q_v)} = \frac{0.0017}{(1.2 \times 1.5)} = 0.0009 \text{ kg/kg} \sim 1 \text{ g/kg} \)

- **Management of internal latent loads in meeting rooms:**
 - Airflow rate 4.2 l/s/m²
 - 1 person / 2 m²
 - 60 g/h/person = 30 g/h/m² = 0.008 g/s/m²
 - Humidity ratio differential between room air and supply air
 - \(dx = \frac{m}{(\rho_l q_v)} = \frac{0.008}{(1.2 \times 4.2)} = 0.0016 \text{ kg/kg} = 1.6 \text{ g/kg} \)
Minimum Airflow Rate to Handle Internal Moisture Loads

Airflow rate (l/s,m²)

<table>
<thead>
<tr>
<th>People density (1 person / m²)</th>
<th>Humidity ratio differential between room and supply air (kg/kg)</th>
<th>0,0005</th>
<th>0,001</th>
<th>0,0015</th>
<th>0,002</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td></td>
<td>13,9</td>
<td>6,9</td>
<td>4,6</td>
<td>3,5</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>9,3</td>
<td>4,6</td>
<td>3,1</td>
<td>2,3</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>6,9</td>
<td>3,5</td>
<td>2,3</td>
<td>1,7</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>5,6</td>
<td>2,8</td>
<td>1,9</td>
<td>1,4</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>4,6</td>
<td>2,3</td>
<td>1,5</td>
<td>1,2</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>4,0</td>
<td>2,0</td>
<td>1,3</td>
<td>1,0</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>3,5</td>
<td>1,7</td>
<td>1,2</td>
<td>0,9</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>3,1</td>
<td>1,5</td>
<td>1,0</td>
<td>0,8</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>2,8</td>
<td>1,4</td>
<td>0,9</td>
<td>0,7</td>
</tr>
</tbody>
</table>

- **Typical meeting room**
- **Typical office room**
- **Office room**

Humidity ratio differential between room and supply air (kg/kg)

<table>
<thead>
<tr>
<th>People density (1 person / m²)</th>
<th>Humidity ratio differential between room and supply air (kg/kg)</th>
<th>0,0005</th>
<th>0,001</th>
<th>0,0015</th>
<th>0,002</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td></td>
<td>13,9</td>
<td>6,9</td>
<td>4,6</td>
<td>3,5</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>9,3</td>
<td>4,6</td>
<td>3,1</td>
<td>2,3</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>6,9</td>
<td>3,5</td>
<td>2,3</td>
<td>1,7</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>5,6</td>
<td>2,8</td>
<td>1,9</td>
<td>1,4</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>4,6</td>
<td>2,3</td>
<td>1,5</td>
<td>1,2</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>4,0</td>
<td>2,0</td>
<td>1,3</td>
<td>1,0</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>3,5</td>
<td>1,7</td>
<td>1,2</td>
<td>0,9</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>3,1</td>
<td>1,5</td>
<td>1,0</td>
<td>0,8</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>2,8</td>
<td>1,4</td>
<td>0,9</td>
<td>0,7</td>
</tr>
</tbody>
</table>
Condensation Shall be Prevented

- Sufficiently high inlet water temperature, equal or above the dew point temperature of the room air
 - 14°C or higher
- Dehumidification of primary air
- Insulation of the valves and pipes
- Using condensation sensors on the pipe surface
- Raising the chilled water temperature or switching off valves locally if there is an increased risk of condensation
Condensation Prevention and Building

• Limited infiltration through building envelope

• Special attention to the building management system if windows are operable

• Building should be slightly over-pressurised in hot and humid climate to avoid infiltration
 – Needs to be taken into account when designing building structures
 – Night ventilation is not recommended and the exhaust fans must also be stopped during the night time.
 – Morning start-up period: Condensation can be prevented by starting dry air ventilation about 30 minutes before the water-based cooling by adjusting the operating hours of the fans and the chilled water pump of the beam system.
Dehumidification process of primary air

- Outdoor air e.g. in Scandinavia
- Inlet water to beams
- Room air
- Supply air
- Water temperature in cooling coil
Chilled Beam System Design in Heating

- Over sizing of heating system may prevent the proper operation of chilled beams used as a heating unit. Use as low an inlet water temperature as possible (max 45°C)
Chilled Beams in Heating

Inlet water 36°C
28°C
Inlet water 55°C
38°C
26°C
Chilled Beam System Design
Mixing valve group

- AHU
- Beams
- 7 – 14°C
- 14 – 19°C
- 15 … °C
- TC
- TE
- ME

Federation of European Heating, Ventilation and Air-conditioning Associations
Room Control
Design Methodology

Determination of space design parameters

Selection of chilled beam type, length and design parameters

Design of room controls, water and air distribution systems and BMS
Determination of space design parameters

Selection of thermal environment level
- Room air temperature / summer $q_a = 23…26 \, ^\circ C$
- Room air temperature / winter $q_a = 20…22 \, ^\circ C$

Selection of inlet water temperature (winter)
- Temperature difference $\Delta \theta = 14…15 \, ^\circ C$
- Specific primary airflow rate of active beam $5\, l/s,m$
- Selection of chilled beam type, length and design parameters

Selection of inlet water temperature (summer)
- Temperature difference $\Delta \theta = 12…13 \, ^\circ C$
- Specific cooling capacity of active beam $P_c = 1.5\, kW$
- Calculation of required cooling and heating capacity

Selection of the indoor air quality level and air flow rate
- Fresh air flow requirement $q_p = 1.5…3 \, l/s,m^2$ and/or $10…15 \, l/s,\, \text{person}$
- Primary air off-coil temperature
 - Temperate climate $q_p = 14…15 \, ^\circ C$ (air moisture content 9…10 g/kg)
 - Hot and humid climate $q_p = 12…13 \, ^\circ C$ (air moisture content 8…8.5 g/kg)
- Check humidity balance based on infiltration, air moisture content and internal loads

Calculation of required cooling and heating capacity
- Heat loads: (dynamic energy simulations and internal loads): $P < 80$ (max 120) W/m²
- Heat losses $P < 45 \, W/m^2,\, \text{floor}$
- Check comfort conditions (draught from windows and asymmetric radiation)
- Cooling effect of primary air:
 $$P_a = c_p \cdot \rho_w \cdot q_p \cdot (q_p - q_a) = 1,005 \, kJ/(kg, K) \cdot 1,20 \, kg/m^3 \cdot q_p \cdot (q_p - q_a)$$

Adjustment of building design parameters
- Decrease external loads/losses by better solar shading and improved window type
- Improve the window and external wall structure to decrease infiltration

Selection of thermal environment level
- Room air temperature / summer $q_a = 23…26 \, ^\circ C$
- Room air temperature / winter $q_a = 20…22 \, ^\circ C$

DEHVA
Federation of European Heating, Ventilation and Air-conditioning Associations
Selection of Chilled Beam Type, Length and Design Parameters

Selection of chilled beam type
- active beam (exposed or integrated into ceiling)
- passive beam + air diffuser (ceiling / wall / floor)

Selection of inlet water temperature (avoid condensation)
- Temperate climate \(q_{w1} = 14\ldots16 \, ^\circ C \)
- Hot and humid climate \(q_{w1} = 17\ldots18 \, ^\circ C \)

Selection of water temperature difference and/or water flow rate
- Temperature difference \(\Delta \theta_w = q_{w2} - q_{w1} = 2\ldots4 \, ^\circ C \)
- Water flow rate (securing turbulent flow inside the pipe)
 - \(q_w = 0.03\ldots0.10 \, \text{kg/s} \) (15 mm pipe)
 - \(q_w = 0.02\ldots0.08 \, \text{kg/s} \) (12 mm pipe)
 - \(q_w = 0.01\ldots0.05 \, \text{kg/s} \) (10 mm pipe)

Select total and active length of beam
- Specific cooling capacity of active beam \(P_L = 250 \) (max. 350) W/m
- Specific heating capacity of active beam \(P_L = \text{max.} \ 150 \) W/m
- Specific primary airflow rate of active beam 5…15 l/s,m (dependent on model)

Noise level and system pressure loss calculation

Selection of chilled beam type, length and design parameters
Selection of room controls
• room air temperature is controlled by modulating water flow rate
• two port valves with time proportional on-off or modular control
• constant air flow rate with possible stand by mode when not occupied

Air and water distribution system
• dehumidification in air handling unit
• three port mixing valve in cooling pipe to keep the inlet water temperature in design value
• free cooling equipments in chiller / air handling unit

Building management system (BMS)
• dew point compensation of inlet water temperature (summer)
• outdoor temperature compensation of inlet water temperature (winter)

Design of Room Controls, Water and Air Distribution Systems and BMS
Product Selection

• The cooling capacity of chilled beams is one of the major selection criteria.
 • However other criteria also need to be considered such as linear cooling capacity and airflow rate, air velocity profile etc.
 • The technical data of different manufacturers are comparable if the cooling capacity measurements are made based on CEN standards created for passive and active chilled beams.

• The acoustic data should be based on measurements according ISO standards as well as the airflow rate and pressure difference.
Product Selection

• It is also important to compare the velocity data in the occupied zone created by the active chilled beam.

• Each manufacturer has a unit specific data for each chilled beam type, because the air velocities are dependent on
 • the construction of the chilled beam,
 • the dimensions and geometry of the supply air slot
 • the induction ratio of the chilled beam.
Product Selection

• Use closed beams in suspended ceiling installations and exposed models in all other installation to avoid problems with wrongly directed throw pattern

• Pay attention also to accessories, ease of installation, and maintenance issues like cleanability of the coil and air plenum as well as access to the coil
Example of Chilled Beam Selection

<table>
<thead>
<tr>
<th>CBC/B-100-3300-3000</th>
</tr>
</thead>
<tbody>
<tr>
<td>INPUT DATA</td>
</tr>
<tr>
<td>Room air temperature</td>
</tr>
<tr>
<td>Relative humidity of room air</td>
</tr>
<tr>
<td>Supply air flow rate</td>
</tr>
<tr>
<td>Supply air temperature</td>
</tr>
<tr>
<td>Inlet water temperature</td>
</tr>
<tr>
<td>Water flow rate</td>
</tr>
<tr>
<td>Effective beam length</td>
</tr>
<tr>
<td>Duct connection</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CALCULATED DATA 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply air capacity</td>
</tr>
<tr>
<td>Water capacity</td>
</tr>
<tr>
<td>Total capacity</td>
</tr>
<tr>
<td>Temperature difference</td>
</tr>
<tr>
<td>Outlet water temperature</td>
</tr>
<tr>
<td>Sound pressure level (without damper)</td>
</tr>
<tr>
<td>Total pressure drop (without damper)</td>
</tr>
<tr>
<td>Pressure drop of water flow</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CALCULATED DATA 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dew point temperature of room air</td>
</tr>
<tr>
<td>Supply air flow rate/radiator length</td>
</tr>
<tr>
<td>Supply air flow rate</td>
</tr>
<tr>
<td>Induced air flow rate</td>
</tr>
<tr>
<td>Air flow rate leaving the unit</td>
</tr>
<tr>
<td>Temperature of air leaving the unit</td>
</tr>
</tbody>
</table>
Different Kind of Chilled Beam Models from Various Manufacturers
Performance of Chilled Beam

There are two architecturally almost identical chilled beams. Chilled beam on the left does not perform well in exposed installation, whereas the throw pattern of the chilled beam on the right is directed correctly towards walls.
TENDERING: Checklist 1/2

- **Capacity of chilled beam**
 - Cooling capacity per meter
 - Heating capacity per meter
 - Supply airflow rate per meter
 - Air chamber pressure
 - Sound level
 - Mock-up test results
 - Test methods

- **Comfort requirements**
 - Air temperature
 - Room air temperature
 - Supply air temperature
 - Temperature gradient in space
 - Air velocity
 - Maximum velocity
 - Velocity in occupied zone
 - Draught rating
 - Surface temperatures
TENDERING: Checklist 2/2

- **Material**
 - Casing design
 - Material thickness
 - Surface treatment
 - Perforations
 - Coil fin thickness and fin pitch
 - Dimensions of pipe and duct connections

- **Installations**
 - Suspended ceiling integration
 - Ceiling connections
 - Hanging system
 - Water and air connections
 - Electric and other connections

- **Cleaning**
 - Access to coil
 - Removable bottom plate
 - Access to air plenum

- **Control system**
CONTRACTING: Checklist

• Checking of drawings
 – Number of beams
 – Installed cooling/heating capacity
 – Airflow rates
 – Locations of beams
 – Total / active length
 – Return air paths in the ceiling
 – Obstacles in front of the chilled beam
 – Pipe and duct connections
 – Connections to lights, sprinkler, speakers etc.

• Installations
 – Slab system
 – Suspended ceiling type
 – Plenum height
 – Distance to walls
COMMISSIONING: Checklist

• Visual inspection
 – Colour and gloss
 – Perforation for return air
 – Any protection / packaging left
 – Nozzle configuration
 – Access to coil / valves / damper
 – Supply air slots direction
 – Surface finish
 • marks
 • correct level

• Inspection of plenum
 – Free airflow at open beams
 – Return air openings
 – Thermal insulations of valves and pipes
 – Pipe and duct connections
 – Flexible hose connections
 – Air vents

• Function
 – Cooling / Heating capacity
 – Airflow rate
 – Air velocity in occupied zone
 – Inlet water temperature
 – Water flow rate
 – Thermal comfort (ISO 7730)
 – Sound level
Installation / Chilled Beam

- The beam can be fixed directly onto the ceiling surface or hung with threaded drop rods.
- The recommended positioning for the mounting bracket is about L/4 measured from the end of the beam.
- The weight of the beam (10–20 kg/m) must be taken into account when beam installation and logistics in building site are planned.
- Chilled beams are often supplied with factory installed protective covers to both the heat exchanger and the inlet to the supply air plenum. Protective end caps should also be fitted to the heat exchanger pipes. These must be removed during the installation.
- Plastic film protecting sheet metal surfaces should be removed just before commissioning.
Installation / suspended ceiling

- Chilled beams can be installed
 - fully exposed
 - recessed within a suspended ceiling
 - positioned above a perforated or an open grid ceiling.

- For beams installed within or above a ceiling, suitable access must be provided for service and maintenance.

- With an open type of chilled beam a free area is required in the suspended ceiling for re-circulation of room air.
 - As a guide, the minimum free area should be 30% of the beam front panel surface area.

- Suspended ceiling should be in the same level than a beam bottom to avoid collision of the supply air with the ceiling.
Installation / pipes

• The main pipes are installed first.
 • Pipes should be installed so, that they do not leave any “air pockets”, and a venting valve should always be installed at the highest point of the vertical main pipes in the shaft.

• Beams are connected to the main pipes by using
 • Crimp, screw or solder connection
 • Flexible hoses (air diffusion resistant hoses are recommended)

• When beams are connected to the pipe, extra attention should be paid to attaching the pipe coupling when using a spanner.
 • The pipe wall is relatively thin and the whole pipe might bend and break the heat exchanger joints.
 • Coupling rings should be used during the installation.
Flush, Filling-up and Venting

Flushing
- To minimize the dirt and facilitate flushing, it is important to close open ends of pipes during the installation work.
- Before starting the flushing it is important to close the shut-off valves of individual beams and flush the main pipes first.

Filling-up and venting the system
- Before filling up, all shut-off and control valves must be in the fully open position.
- Pumps should not be running during the filling-up (static filling).
- Continuous venting is necessary and it is recommended to have both manual and automatic venting systems installed.
- Pump should only be started when filling is complete.
- To remove all air from the system, the major part (>75%) of the system should be closed so that the water can circulate fast enough.
- When each section is full, it should be closed, and the same procedure repeated for the rest of the system.
Commissioning

- **Airflow rates are typically adjusted with a blade or an iris damper.**
 - The iris damper should be positioned far enough away from the beam to ensure the even flow inside the duct before a beam. This safety distance (>3D) is needed to avoid any performance failure.
 - Measuring the airflow rate by using a chamber pressure measurement in the beam is recommended. This gives the most accurate measurement result due to the higher pressure level (50-150 Pa). In other methods e.g. pitot-tube measurement the pressure level is much lower.

- **The commissioning of the chilled and hot water circulation systems**
 - Balancing the water flow rates using balancing valves
 - Ensuring that all the shut-off valves are open

- **Check the function of chilled beam:**
 - As an example with an IR-sensor directed towards the chilled beam supply air slot after maximum cooling capacity is set on the room controller. This will highlight any malfunction of system (too low water flow rate, shut off valves closed, etc.)
Maintenance

- **Have easy access to the inside of the beam**
 - heat exchanger,
 - supply air plenum
 - primary air ductwork

- **Heat exchanger should be vacuum cleaned once every 1-5 years depending on the use of space.**

- **If either the beam surface or the finned coil becomes wet, it must be cleaned immediately.**
 - Dirt adheres more easily to the wet surface of fins. When the coil is dry again the fin surface is often coated with dirt.

- **There are no moving parts apart from the control valve, and systems do not include filters or condensation collection drains and pipes which require cleaning.**
Essential Issues in Beam Operation

• The chilled beam system is a dry-cooling system and therefore the inlet water temperature must always be above the dew point temperature.

• When condensation occurs, the water circulation in that area must be stopped, even before looking for the cause of the condensation.

• If the room air has become too humid, the ventilation should be switched on, and after the building has been dehumidified, the water circulation can be restarted.

• It is important that the dehumidification by the air-handling unit has been realised correctly and that the control operates properly.

• The operation of the 3-way mixing valve should be checked regularly.
Solutions for Typical Complaints of Users

- **Draught**
 - Check that the room air temperature is not too low
 - Check that the airflow rate is not too high or too low
 - Too high an airflow rate may create draught near the floor
 - If the airflow rate is too low or too cold, the air jet may fall intentionally downwards, which may create draught at the neck level

- **High room air temperature**
 - Check that water flow rate is not too low
 - Check that the water flow temperature is not too high
 - If the heat loads in the space are significantly higher than the capacity of the chilled beam, the water flow rate could be increased. If this does not solve the problem, longer or additional units should be installed.
A Case of Office Building in United Kingdom

<table>
<thead>
<tr>
<th>Project</th>
<th>Office Building in London</th>
</tr>
</thead>
<tbody>
<tr>
<td>Space, where chilled beams are used</td>
<td>Office room</td>
</tr>
<tr>
<td>Window internal surface temperature</td>
<td>30°C</td>
</tr>
<tr>
<td>Sensible internal heat loads</td>
<td>50 W/m².floor</td>
</tr>
<tr>
<td>External heat loads</td>
<td>30 W/m².floor</td>
</tr>
<tr>
<td>Heat losses</td>
<td>25 W/m².floor</td>
</tr>
<tr>
<td>Supply air properties</td>
<td>2.5 l/s.floor-m², supply air temperature in summer 16°C and winter 18°C</td>
</tr>
<tr>
<td>Room design parameters</td>
<td>Room air temperature in summer 24°C and winter 21°C</td>
</tr>
<tr>
<td>Flexibility</td>
<td>Flexibility of 2.65 m, beams installed lengthwise in every module</td>
</tr>
<tr>
<td>Chilled beam selection</td>
<td>Exposed, open active service chilled beam, total length 5100 mm, effective length 4200 mm, cooling output 370 W/m, heating output 120 W/m, primary air volume 11 l/s.m, cooling water flow rate 0.04 kg/s and inlet water temperature of 14°C, heating water flow rate 0.01 kg/s and inlet water temperature of 35°C</td>
</tr>
</tbody>
</table>
A Case of Office Building in United Kingdom

Measurement result: cooling

<table>
<thead>
<tr>
<th>Height (m)</th>
<th>v (m/s)</th>
<th>T_a (°C)</th>
<th>Turb. (%)</th>
<th>DR (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.80</td>
<td>0.11</td>
<td>22.6</td>
<td>40</td>
<td>9</td>
<td>0.11</td>
<td>22.9</td>
<td>46</td>
<td>10</td>
<td>0.10</td>
<td>22.9</td>
<td>45</td>
<td>8</td>
<td>0.11</td>
<td>23.1</td>
<td>58</td>
<td>10</td>
<td>0.07</td>
<td>23.2</td>
<td>46</td>
<td>4</td>
</tr>
<tr>
<td>1.50</td>
<td>0.12</td>
<td>22.4</td>
<td>35</td>
<td>10</td>
<td>0.10</td>
<td>22.8</td>
<td>45</td>
<td>8</td>
<td>0.11</td>
<td>22.8</td>
<td>40</td>
<td>9</td>
<td>0.12</td>
<td>23.0</td>
<td>49</td>
<td>11</td>
<td>0.09</td>
<td>23.1</td>
<td>39</td>
<td>7</td>
</tr>
<tr>
<td>1.10</td>
<td>0.10</td>
<td>22.3</td>
<td>31</td>
<td>8</td>
<td>0.10</td>
<td>22.6</td>
<td>43</td>
<td>8</td>
<td>0.09</td>
<td>22.8</td>
<td>45</td>
<td>7</td>
<td>0.14</td>
<td>22.8</td>
<td>45</td>
<td>14</td>
<td>0.11</td>
<td>23.1</td>
<td>39</td>
<td>9</td>
</tr>
<tr>
<td>0.60</td>
<td>0.07</td>
<td>22.3</td>
<td>46</td>
<td>4</td>
<td>0.09</td>
<td>22.5</td>
<td>46</td>
<td>7</td>
<td>0.08</td>
<td>22.8</td>
<td>50</td>
<td>6</td>
<td>0.13</td>
<td>22.9</td>
<td>36</td>
<td>11</td>
<td>0.11</td>
<td>23.1</td>
<td>51</td>
<td>10</td>
</tr>
<tr>
<td>0.20</td>
<td>0.09</td>
<td>22.2</td>
<td>42</td>
<td>7</td>
<td>0.11</td>
<td>22.4</td>
<td>46</td>
<td>10</td>
<td>0.06</td>
<td>22.8</td>
<td>45</td>
<td>3</td>
<td>0.10</td>
<td>23.0</td>
<td>44</td>
<td>8</td>
<td>0.10</td>
<td>23.1</td>
<td>49</td>
<td>8</td>
</tr>
<tr>
<td>0.10</td>
<td>0.15</td>
<td>22.1</td>
<td>31</td>
<td>14</td>
<td>0.16</td>
<td>22.2</td>
<td>33</td>
<td>15</td>
<td>0.09</td>
<td>22.7</td>
<td>40</td>
<td>7</td>
<td>0.11</td>
<td>23.0</td>
<td>40</td>
<td>9</td>
<td>0.13</td>
<td>23.1</td>
<td>43</td>
<td>12</td>
</tr>
</tbody>
</table>

Measurement result: heating

<table>
<thead>
<tr>
<th>Height (m)</th>
<th>v (m/s)</th>
<th>T_a (°C)</th>
<th>Turb. (%)</th>
<th>DR (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.80</td>
<td>0.04</td>
<td>21.7</td>
<td>52</td>
<td>-</td>
<td>0.08</td>
<td>21.7</td>
<td>33</td>
<td>6</td>
<td>0.08</td>
<td>21.7</td>
<td>42</td>
<td>6</td>
<td>0.08</td>
<td>21.4</td>
<td>35</td>
<td>6</td>
<td>0.07</td>
<td>21.2</td>
<td>44</td>
<td>5</td>
</tr>
<tr>
<td>1.50</td>
<td>0.03</td>
<td>21.5</td>
<td>50</td>
<td>-</td>
<td>0.07</td>
<td>21.5</td>
<td>52</td>
<td>5</td>
<td>0.08</td>
<td>21.5</td>
<td>44</td>
<td>6</td>
<td>0.09</td>
<td>21.4</td>
<td>41</td>
<td>8</td>
<td>0.08</td>
<td>21.2</td>
<td>39</td>
<td>6</td>
</tr>
<tr>
<td>1.10</td>
<td>0.03</td>
<td>21.2</td>
<td>46</td>
<td>-</td>
<td>0.04</td>
<td>21.2</td>
<td>79</td>
<td>-</td>
<td>0.03</td>
<td>21.2</td>
<td>43</td>
<td>-</td>
<td>0.10</td>
<td>21.3</td>
<td>34</td>
<td>9</td>
<td>0.08</td>
<td>21.2</td>
<td>34</td>
<td>6</td>
</tr>
<tr>
<td>0.60</td>
<td>0.02</td>
<td>20.6</td>
<td>32</td>
<td>-</td>
<td>0.02</td>
<td>20.6</td>
<td>27</td>
<td>-</td>
<td>0.02</td>
<td>20.6</td>
<td>33</td>
<td>-</td>
<td>0.06</td>
<td>20.8</td>
<td>53</td>
<td>3</td>
<td>0.07</td>
<td>20.9</td>
<td>59</td>
<td>5</td>
</tr>
<tr>
<td>0.20</td>
<td>0.02</td>
<td>20.4</td>
<td>30</td>
<td>-</td>
<td>0.02</td>
<td>20.3</td>
<td>20</td>
<td>-</td>
<td>0.03</td>
<td>20.2</td>
<td>36</td>
<td>-</td>
<td>0.06</td>
<td>20.2</td>
<td>40</td>
<td>3</td>
<td>0.11</td>
<td>20.5</td>
<td>37</td>
<td>11</td>
</tr>
<tr>
<td>0.10</td>
<td>0.02</td>
<td>20.3</td>
<td>28</td>
<td>-</td>
<td>0.02</td>
<td>20.1</td>
<td>28</td>
<td>-</td>
<td>0.03</td>
<td>19.9</td>
<td>35</td>
<td>-</td>
<td>0.05</td>
<td>19.6</td>
<td>32</td>
<td>-</td>
<td>0.09</td>
<td>19.9</td>
<td>34</td>
<td>8</td>
</tr>
</tbody>
</table>
A Case of Office Building in France

<table>
<thead>
<tr>
<th>Project</th>
<th>Office Building in Paris</th>
</tr>
</thead>
<tbody>
<tr>
<td>Space, where chilled beams are used</td>
<td>Office room</td>
</tr>
<tr>
<td>Window internal surface temperature</td>
<td>30°C</td>
</tr>
<tr>
<td>Sensible internal heat loads</td>
<td>45 W/m², floor</td>
</tr>
<tr>
<td>External heat loads</td>
<td>40 W/m², floor</td>
</tr>
<tr>
<td>Heat losses</td>
<td>50 W/m², floor</td>
</tr>
<tr>
<td>Supply air properties</td>
<td>2 l/s,floor-m², supply air temperature in summer 14°C and winter 21°C</td>
</tr>
<tr>
<td>Room design parameters</td>
<td>Room air temperature in summer 24°C and winter 21°C</td>
</tr>
<tr>
<td>Flexibility</td>
<td>Flexibility of 1.5 m, beams installed lengthwise in every second module</td>
</tr>
<tr>
<td>Chilled beam selection</td>
<td>600 mm wide, closed active chilled beam, total length 3000 mm, effective length 2700 mm, cooling output 400 W/m, heating output 270 W/m, primary air volume 9 l/s,m, cooling water flow rate 0.10 kg/s and inlet water temperature of 14°C, heating water flow rate 0.013 kg/s and inlet water temperature of 40°C</td>
</tr>
</tbody>
</table>

![Diagram of office building layout](image-url)
Measurement result: cooling with standard air diffusion.

<table>
<thead>
<tr>
<th>Height (m)</th>
<th>v (m/s)</th>
<th>T_a (°C)</th>
<th>Turb. (%)</th>
<th>DR (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.80</td>
<td>0.05</td>
<td>23.7</td>
<td>47</td>
<td>-</td>
<td>0.05</td>
<td>23.8</td>
<td>45</td>
<td>-</td>
<td>0.08</td>
<td>23.8</td>
<td>73</td>
<td>6</td>
<td>0.06</td>
<td>23.6</td>
<td>56</td>
<td>3</td>
</tr>
<tr>
<td>1.40</td>
<td>0.05</td>
<td>23.6</td>
<td>46</td>
<td>-</td>
<td>0.06</td>
<td>23.6</td>
<td>51</td>
<td>3</td>
<td>0.07</td>
<td>23.5</td>
<td>48</td>
<td>4</td>
<td>0.08</td>
<td>23.5</td>
<td>45</td>
<td>5</td>
</tr>
<tr>
<td>1.10</td>
<td>0.05</td>
<td>23.5</td>
<td>53</td>
<td>-</td>
<td>0.06</td>
<td>23.4</td>
<td>60</td>
<td>3</td>
<td>0.08</td>
<td>23.4</td>
<td>47</td>
<td>5</td>
<td>0.09</td>
<td>23.8</td>
<td>43</td>
<td>6</td>
</tr>
<tr>
<td>0.60</td>
<td>0.07</td>
<td>23.4</td>
<td>53</td>
<td>4</td>
<td>0.10</td>
<td>23.4</td>
<td>44</td>
<td>8</td>
<td>0.11</td>
<td>23.4</td>
<td>39</td>
<td>9</td>
<td>0.06</td>
<td>23.3</td>
<td>46</td>
<td>3</td>
</tr>
<tr>
<td>0.20</td>
<td>0.13</td>
<td>23.4</td>
<td>25</td>
<td>10</td>
<td>0.10</td>
<td>23.5</td>
<td>46</td>
<td>8</td>
<td>0.07</td>
<td>23.5</td>
<td>39</td>
<td>4</td>
<td>0.17</td>
<td>22.8</td>
<td>29</td>
<td>15</td>
</tr>
<tr>
<td>0.10</td>
<td>0.16</td>
<td>23.3</td>
<td>23</td>
<td>12</td>
<td>0.13</td>
<td>23.6</td>
<td>43</td>
<td>11</td>
<td>0.10</td>
<td>23.4</td>
<td>33</td>
<td>7</td>
<td>0.13</td>
<td>22.8</td>
<td>38</td>
<td>12</td>
</tr>
</tbody>
</table>

Measurement result: cooling with reduced induction in the right hand side of a beam (cooling capacity is reduced 11%)

<table>
<thead>
<tr>
<th>Height (m)</th>
<th>v (m/s)</th>
<th>T_a (°C)</th>
<th>Turb. (%)</th>
<th>DR (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.80</td>
<td>-</td>
<td>0.09</td>
<td>23.6</td>
<td>42</td>
<td>6</td>
<td>0.07</td>
<td>23.7</td>
<td>59</td>
<td>4</td>
<td>0.11</td>
<td>23.8</td>
<td>44</td>
<td>9</td>
<td>0.11</td>
<td>23.6</td>
<td>57</td>
</tr>
<tr>
<td>1.40</td>
<td>-</td>
<td>0.06</td>
<td>23.6</td>
<td>48</td>
<td>3</td>
<td>0.06</td>
<td>23.6</td>
<td>48</td>
<td>3</td>
<td>0.08</td>
<td>23.6</td>
<td>49</td>
<td>5</td>
<td>0.10</td>
<td>23.5</td>
<td>47</td>
</tr>
<tr>
<td>1.10</td>
<td>-</td>
<td>0.06</td>
<td>23.5</td>
<td>52</td>
<td>3</td>
<td>0.08</td>
<td>23.4</td>
<td>44</td>
<td>5</td>
<td>0.08</td>
<td>23.4</td>
<td>58</td>
<td>6</td>
<td>0.11</td>
<td>23.4</td>
<td>41</td>
</tr>
<tr>
<td>0.60</td>
<td>-</td>
<td>0.07</td>
<td>23.5</td>
<td>45</td>
<td>4</td>
<td>0.08</td>
<td>23.4</td>
<td>38</td>
<td>5</td>
<td>0.13</td>
<td>23.3</td>
<td>39</td>
<td>11</td>
<td>0.13</td>
<td>2.5</td>
<td>28</td>
</tr>
<tr>
<td>0.20</td>
<td>-</td>
<td>0.06</td>
<td>23.5</td>
<td>47</td>
<td>3</td>
<td>0.08</td>
<td>23.5</td>
<td>42</td>
<td>5</td>
<td>0.15</td>
<td>23.3</td>
<td>23</td>
<td>11</td>
<td>0.08</td>
<td>23.7</td>
<td>35</td>
</tr>
<tr>
<td>0.10</td>
<td>-</td>
<td>0.12</td>
<td>23.5</td>
<td>35</td>
<td>9</td>
<td>0.09</td>
<td>23.5</td>
<td>47</td>
<td>7</td>
<td>0.16</td>
<td>23.3</td>
<td>30</td>
<td>13</td>
<td>0.10</td>
<td>23.6</td>
<td>32</td>
</tr>
</tbody>
</table>

Measurement result: heating

<table>
<thead>
<tr>
<th>Height (m)</th>
<th>v (m/s)</th>
<th>T_a (°C)</th>
<th>Turb. (%)</th>
<th>DR (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.80</td>
<td>0.40</td>
<td>22.3</td>
<td>11</td>
<td>29</td>
<td>0.10</td>
<td>22.0</td>
<td>37</td>
<td>8</td>
<td>0.09</td>
<td>21.4</td>
<td>54</td>
<td>8</td>
<td>0.09</td>
<td>21.8</td>
<td>31</td>
<td>7</td>
</tr>
<tr>
<td>1.40</td>
<td>0.23</td>
<td>21.4</td>
<td>46</td>
<td>31</td>
<td>0.12</td>
<td>21.7</td>
<td>30</td>
<td>11</td>
<td>0.04</td>
<td>20.7</td>
<td>53</td>
<td>-</td>
<td>0.05</td>
<td>20.9</td>
<td>33</td>
<td>-</td>
</tr>
<tr>
<td>1.10</td>
<td>0.10</td>
<td>20.1</td>
<td>56</td>
<td>11</td>
<td>0.05</td>
<td>19.8</td>
<td>46</td>
<td>-</td>
<td>0.03</td>
<td>19.7</td>
<td>39</td>
<td>-</td>
<td>0.03</td>
<td>20.0</td>
<td>59</td>
<td>-</td>
</tr>
<tr>
<td>0.60</td>
<td>0.03</td>
<td>18.8</td>
<td>22</td>
<td>-</td>
<td>0.03</td>
<td>18.8</td>
<td>34</td>
<td>-</td>
<td>0.02</td>
<td>18.7</td>
<td>46</td>
<td>-</td>
<td>0.02</td>
<td>18.9</td>
<td>23</td>
<td>-</td>
</tr>
<tr>
<td>0.20</td>
<td>0.05</td>
<td>18.4</td>
<td>24</td>
<td>-</td>
<td>0.05</td>
<td>18.0</td>
<td>27</td>
<td>-</td>
<td>0.03</td>
<td>18.0</td>
<td>36</td>
<td>-</td>
<td>0.02</td>
<td>18.3</td>
<td>31</td>
<td>-</td>
</tr>
<tr>
<td>0.10</td>
<td>0.04</td>
<td>18.2</td>
<td>29</td>
<td>-</td>
<td>0.06</td>
<td>17.6</td>
<td>20</td>
<td>3</td>
<td>0.04</td>
<td>17.6</td>
<td>28</td>
<td>-</td>
<td>0.03</td>
<td>17.9</td>
<td>33</td>
<td>-</td>
</tr>
</tbody>
</table>
A Case of Office Building in Belgium

<table>
<thead>
<tr>
<th>Project</th>
<th>Office Building in Belgium</th>
</tr>
</thead>
<tbody>
<tr>
<td>Space, where chilled beams are used</td>
<td>Office room</td>
</tr>
<tr>
<td>Window internal surface temperature</td>
<td>38°C</td>
</tr>
<tr>
<td>Sensible internal heat loads</td>
<td>35 W/m²,floor</td>
</tr>
<tr>
<td>External heat loads</td>
<td>65 W/m²,floor</td>
</tr>
<tr>
<td>Heat losses</td>
<td>80 W/ m²,floor</td>
</tr>
<tr>
<td>Supply air properties</td>
<td>3 l/s,floor-m², supply air temperature in summer 15°C and winter 15°C</td>
</tr>
<tr>
<td>Room design parameters</td>
<td>Room air temperature in summer 25°C and winter 21°C, relative humidity in summer under 50%,</td>
</tr>
<tr>
<td>Flexibility</td>
<td>Flexibility of 1.5 m, beams installed crosswise in every module</td>
</tr>
<tr>
<td>Chilled beam selection</td>
<td>300 mm wide, open active chilled beam, total length 1400 mm, effective length 1200 mm, cooling output 500 W/m, heating output 380 W/m, primary air volume 15 l/s,m, cooling water flow rate 0.10 kg/s and inlet water temperature of 15°C, heating water flow rate 0.038 kg/s and inlet water temperature of 55°C</td>
</tr>
</tbody>
</table>

Room Lay-out:

Measurement grid:
A Case of Office Building in Belgium

Measurement result: cooling

<table>
<thead>
<tr>
<th>Height (m)</th>
<th>v (m/s)</th>
<th>T_a (°C)</th>
<th>Turb. (%)</th>
<th>DR %</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.00</td>
<td>0.34</td>
<td>24.2</td>
<td>25</td>
<td>29</td>
<td>0.10</td>
<td>24.7</td>
<td>34</td>
<td>6</td>
<td>0.13</td>
<td>24.8</td>
<td>24</td>
<td>8</td>
<td>0.13</td>
<td>25.0</td>
<td>31</td>
<td>9</td>
</tr>
<tr>
<td>1.70</td>
<td>0.25</td>
<td>24.3</td>
<td>36</td>
<td>23</td>
<td>0.09</td>
<td>24.6</td>
<td>29</td>
<td>5</td>
<td>0.13</td>
<td>24.7</td>
<td>35</td>
<td>9</td>
<td>0.12</td>
<td>24.9</td>
<td>33</td>
<td>8</td>
</tr>
<tr>
<td>1.40</td>
<td>0.20</td>
<td>24.4</td>
<td>37</td>
<td>17</td>
<td>0.06</td>
<td>24.5</td>
<td>52</td>
<td>2</td>
<td>0.08</td>
<td>24.6</td>
<td>52</td>
<td>5</td>
<td>0.11</td>
<td>24.9</td>
<td>31</td>
<td>7</td>
</tr>
<tr>
<td>1.10</td>
<td>0.15</td>
<td>24.4</td>
<td>45</td>
<td>13</td>
<td>0.07</td>
<td>24.5</td>
<td>67</td>
<td>4</td>
<td>0.07</td>
<td>24.5</td>
<td>57</td>
<td>4</td>
<td>0.10</td>
<td>24.8</td>
<td>45</td>
<td>7</td>
</tr>
<tr>
<td>0.60</td>
<td>0.08</td>
<td>24.5</td>
<td>59</td>
<td>5</td>
<td>0.14</td>
<td>24.4</td>
<td>41</td>
<td>11</td>
<td>0.11</td>
<td>24.5</td>
<td>49</td>
<td>9</td>
<td>0.08</td>
<td>24.9</td>
<td>41</td>
<td>5</td>
</tr>
<tr>
<td>0.10</td>
<td>0.22</td>
<td>24.3</td>
<td>20</td>
<td>15</td>
<td>0.25</td>
<td>24.3</td>
<td>21</td>
<td>18</td>
<td>0.11</td>
<td>24.6</td>
<td>54</td>
<td>9</td>
<td>0.04</td>
<td>25.3</td>
<td>59</td>
<td>-</td>
</tr>
</tbody>
</table>

Measurement result: heating

<table>
<thead>
<tr>
<th>Height (m)</th>
<th>v (m/s)</th>
<th>T_a (°C)</th>
<th>Turb. (%)</th>
<th>DR %</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.00</td>
<td>0.15</td>
<td>22.8</td>
<td>28</td>
<td>13</td>
<td>0.07</td>
<td>22.6</td>
<td>45</td>
<td>4</td>
<td>0.07</td>
<td>22.6</td>
<td>48</td>
<td>4</td>
<td>0.03</td>
<td>22.7</td>
<td>44</td>
<td>-</td>
</tr>
<tr>
<td>1.70</td>
<td>0.09</td>
<td>22.5</td>
<td>42</td>
<td>7</td>
<td>0.05</td>
<td>22.4</td>
<td>58</td>
<td>-</td>
<td>0.03</td>
<td>22.2</td>
<td>42</td>
<td>-</td>
<td>0.03</td>
<td>22.2</td>
<td>41</td>
<td>-</td>
</tr>
<tr>
<td>1.40</td>
<td>0.12</td>
<td>22.4</td>
<td>44</td>
<td>11</td>
<td>0.04</td>
<td>22.2</td>
<td>34</td>
<td>-</td>
<td>0.02</td>
<td>21.9</td>
<td>36</td>
<td>-</td>
<td>0.02</td>
<td>21.8</td>
<td>30</td>
<td>-</td>
</tr>
<tr>
<td>1.10</td>
<td>0.12</td>
<td>21.9</td>
<td>37</td>
<td>11</td>
<td>0.04</td>
<td>21.6</td>
<td>32</td>
<td>-</td>
<td>0.02</td>
<td>21.5</td>
<td>39</td>
<td>-</td>
<td>0.02</td>
<td>21.5</td>
<td>25</td>
<td>-</td>
</tr>
<tr>
<td>0.60</td>
<td>0.04</td>
<td>21.1</td>
<td>18</td>
<td>-</td>
<td>0.03</td>
<td>20.9</td>
<td>23</td>
<td>-</td>
<td>0.03</td>
<td>21.0</td>
<td>19</td>
<td>-</td>
<td>0.03</td>
<td>21.1</td>
<td>25</td>
<td>-</td>
</tr>
<tr>
<td>0.10</td>
<td>0.03</td>
<td>20.6</td>
<td>19</td>
<td>-</td>
<td>0.02</td>
<td>20.5</td>
<td>29</td>
<td>-</td>
<td>0.02</td>
<td>20.5</td>
<td>16</td>
<td>-</td>
<td>0.02</td>
<td>20.2</td>
<td>24</td>
<td>-</td>
</tr>
</tbody>
</table>
Chilled Beam System Benefits

• Comfortable indoor climate conditions
 • desired air temperature
 • low room air velocity
 • low noise in operation

• Economical life cycle
 • competitive investment cost
 • savings in running cost
 • limited maintenance requirements
 • easy to use with free/low energy systems

• Hygienic solution
 • dry coil operation
 • no drains or filters
 • openable construction for serviceability and easy cleaning
Thank you for your attention

To order the REHVA guidebooks: www.rehva.eu / section Bookstore or through your national member