Securing adequate indoor air quality (IAQ) across Europe: Developing the health-based ventilation guidelines (HealthVent project)

Pawel Wargocki and HealthVent Group

www.healthvent.eu
HealthVent Group

- Technical University of Denmark, coordinator
- Fiedrich-Schiller-University Jena
- University of Milan
- Association Asthma
- European Federation of Allergy and Airways Diseases Association
- National Institute of Health and Welfare, Helsinki
- Faculty of Engineering, University of Porto
- National and Kapodistrian University of Athens
- University of La Rochelle
- (Sintef Energy AS)
- REHVA
- Joint Research Centre, Ispra (collaborating partner)
- WHO, Office in Bonn (collaborating partner)
Reporting, in preparation

EUROPEAN COLLABORATIVE ACTION
URBAN AIR, INDOOR ENVIRONMENT AND HUMAN EXPOSURE

Environment and Quality of Life

Report No 30
Guidelines for health-based ventilation in Europe (HealthVent)

EUROPEAN COMMISSION
JOINT RESEARCH CENTRE
Institute for Health and Consumer Protection
Chemical Assessment Unit

2011

EUR 25000 EN
Outline

- Background and motivation
- Founding premises and definitions
- Implementation
- Implications
- Summary and research gaps
- Acknowledgments
- Guidelines in a nut shell
Background and motivation
Exposure INDOORS has been recognized as a significant determinant of population health

- Ambient air quality
- Building materials
- Furnishing, interior materials and electric appliances
- Ventilation and conditioning
- Cleaning and other household
- Heating and combustion
- Water systems, dampness and mould
- Building site (radon from soil)

ETS excluded!

Source: EnVIE Project (2009); IAIAQ (2011)
Strategic priorities to control exposures

- Policies re. energy efficiency, building materials, products and maintenance
- Policies re. the impact of outdoor environment
- Policies re. specific building construction and equipment

Development of health-based ventilation guidelines has been recognized as a strategic priority to reduce BOD associated with exposure to air pollution

Source: EnVIE Project (2009)
Current ventilation standards do not adequately address the health-relevant aspects of IAQ

- Ventilation rates based on sensory comfort (different classes of comfort), not based on “hard” health data
- Requirements are defined for different classes of building users (visitors and occupants) and modified based on the strength of pollution sources (classes of building materials)
- Ventilation rates not defined on target values for exposures
- There have been no (formal) requirements for air used for ventilation (ambient air assumed to be clean) and there are no requirements for compliance with the requirements in the standard
Objective of HealthVent

- Development of health-based ventilation guidelines (to control exposure to pollutants) for new and existing non-industrial buildings (offices, homes and public buildings, schools, nurseries and day-care centers)
Founding premises and definitions
Health-Exposure-Ventilation

Outdoor air: combustion, industrial pollution, traffic, pollens, etc.
Ventilation system: ventilation, air-conditioning

Sources: building materials, furnishing, equipment, consumer products, etc.
Humans: occupants & their activities

Ventilation and/or infiltration

Exposure

Human uptake

Health
Prerequisites for Creating the Guidelines

- Coordinated framework
- Exposure must respect WHO guidelines (scientific “state of the art”)
- The priority is given to source control outdoors and indoors
- Ventilation is the ultimate (last resort) strategy
Definition of Health-Based Ventilation

Health-based ventilation rate” is defined for a specific building when exposures to pollutants meet the WHO air quality guidelines guideline values through a double sequential approach integrating at first source control measures and then the appropriate ventilation rate.
Decision Diagram for Defining Health-Based Ventilation Rates

- Air supplied must always meet WHO AQ Guidelines
- When WHO AQ Guidelines met through control of sources then health-based ventilation rate equals base rate
- When WHO AQ Guidelines cannot be met through control of sources then health-based ventilation rate is a multiply of base rate
Implementation
Ambient Air + Indoor Air = One Air!

Indoor air quality issues need to be integrated in the review of Ambient Air Directive accounting for the associated environmental, health, social and economic impacts.

Labeling of building and consumer products

- Harmonized product labeling criteria need to be used as a part of ventilation rate design specification
Definition of base rate

- The base ventilation rate is a basic requirement that should always be satisfied when people are present indoors.

- It is the rate intended to dilute and exhaust occupant bioeffluents.

- The health-based ventilation rate cannot be lower than the base rate.
Selection of base rate

- There is limited data available and more research is needed.
- Modeling of ventilation needs to remove bioeffluents (moisture and CO₂) and the review of epidemiological literature has been used to estimate the base rate.
- 4 L/s per person is PROPOSED as a result.
Ventilation systems must support ventilation guidelines

- Guidelines for design, operation and maintenance of systems used to supply air for ventilation
- Health-based ventilation always refer to person (not to room volume)
- Health-based ventilation is decoupled from ventilation for achieving thermal comfort

GUIDELINES FOR DESIGN, OPERATION AND MAINTENANCE OF SYSTEMS USED TO SUPPLY AIR FOR VENTILATION (1/2)

- The air supplied by any system used for ventilation should comply with the principles of the health-based ventilation guidelines. The systems should meet these requirements from the initiation and through the entire life-time of the building.
- Ventilation systems should be decoupled from heating/cooling systems as the rather low air heat capacity does not entitle it as an adequate energy efficient heat/cool carrier. Otherwise the levels of ventilation are exacerbated high and the energy efficiency and the IAQ are not adequately cared of.
- Low-emitting, certified and durable materials should be used in any system used for ventilation. Emission from fibrous materials should be reduced to a minimum.
- Systems used for ventilation should be kept clean for the whole building lifetime. They should be cleaned at regular intervals using certified products for wet and dry cleaning which do not elevate exposures relevant for the health-based ventilation guidelines.
- The performance of mechanical ventilation systems should be verified at the commissioning phase and shall be granted by the deliverers at any time for their all lifelong.
- Condensation in the systems used for ventilation should be minimized to avoid microbial growth. Systems should be properly drained and kept dry. Outdoor air intakes should prevent against rain and snow entrainment. Systems creating risk of condensation and moisture should be separated from the systems supplying the air for health-based ventilation.
- Air cleaning producing ozone in the systems used for ventilation should be avoided.
- The rate of ventilation should cope with the actual needs and demands and should not only be based on the design parameters. The rate should be determined following the principles for determining health-based ventilation.
- In case a mechanical system is used for ventilation, there should be contingency plan for ensuring ventilation (e.g. by opening the windows or other measures) in case of the system failure. This also applies to blocking and shutting down the systems by the users and operators.
- All outdoor air intakes including openings for natural ventilation should be located to minimize the direct entrainment of pollutants from nearby sources.
Implications
Health Implications

- Baseline: 2.01
- Optimal dilution only: 1.58
 - Outdoor sources: 0.80
 - Indoor sources: 0.78
- Air filtration (PM2.5 by 50%): 1.18
 - Outdoor sources: 0.74
 - Indoor sources: 0.44
- Src ctrl (-90/-50/-25% + 4 lps pp): 1.10
 - Outdoor sources: 0.69
 - Indoor sources: 0.41
Energy Implications

Impact of changing ventilation rate by 2 L/sp from 4 L/s p

Traditional system

Advanced HVAC system; in a tight building: Free cooling, heat recovery, demand control
Summary
Future research

- Proper characterization of exposures and ventilation.
- Chronic health effects.
- Subpopulations with special needs (i.e. vulnerable groups).
Acknowledgments

- July 1, 2010 to March 31, 2013
- €495,000 (total €750,707)
- Based on experience, findings and recommendations of EnVie, IAIAQ, WHO Air Quality Guidelines and other relevant projects in the field of IAQ and health
- 11 partners, multidisciplinary team of experts from medicine, engineering, indoor air sciences, exposure and risk assessment, energy, ventilation practices and patients groups
HealthVent Group

Francis ALLARD
Arja ASIKAINEN
Dimosthenes ASIMAKOPOULOS
Margarita-Niki ASIMAKOPOULOU
Wolfgang BISCHOFF
Mattias BRAUBACH
Nejc BRELIK
David BRENNAN
Paolo CARRER
Annaclara FANETTI
Eduardo DE OLIVEIRA FERNANDES
Thomas HARTMANN
Otto HÄNNINEN
Marie-Eve HÉROUX

Matti JANTUNEN
Stylianos KEPHALOPOULOS
Vitor LEAL
Tihomir MUSTAKOV
Susanna PALKONNEN
Ted POPOV
Christine ROLLAND
Maria SALARI
Mats SANTAMOURIS
Hugo SANTOS
Roberta SAVLI
Olli SEPPÄNEN
Pawel WARGOCKI
Guidelines in a Nut Shell

Roadmap for achieving health-based ventilation requirements

- Air represents a bigger exposure burden and health threat indoors than outdoors.
- Outdoor air is an important source of exposures occurring indoors.
- Indoor air quality must comply with WHO guidelines being the scientific ‘state of the art’ leading to the criteria to manage air quality indoors as well as outdoors.
- Source control is the priority strategy in controlling exposures.
- Ventilation regulations are based on and justified by health criteria.
- The base ventilation rate is defined to be 4 L/s per person and is related to human bioeffluents.
- Health-based ventilation rate in a specific buildings can not be lower than the base rate.
- Health-based ventilation is decoupled from ventilation for controlling thermal comfort.
- Ventilation systems must support health-based ventilation.
- Legislative framework needs to be developed and research implemented to support the guidelines
- Gaps in knowledge are defined