

Co-funded by the Intelligent Energy Europe Programme of the European Union

www.nezeh.eu

nZEB refurbishment of Italian hotel buildings

prof. Stefano Paolo Corgnati,

- # Rehva
- # Energy Department Politecnico di Torino

REHVA Federation of European Heatin Ventilation and Air-conditioning

www.nezeh.eu

TECHNICAL UNIVERSITY OF CRETE (TUC) ENVIRONMENTAL ENGINEERING DEPARTMENT RENEWABLE AND SUSTAINABLE ENERGY SYSTEMS LAB

REHVA

Federation of European Heating, Ventilation and Air-conditioning Associations

Istituto Superiore sui Sistemi Territoriali per l'Innovazione

nearly Zero Energy Building

- High Energy performance
- Low energy demand
- Residual energy demand coverd by RES

from building \rightarrow to hotel

Limit of energy performance related to «European Cliamtic Zones»

Indicator: Primary Energy

What is it considered ?

«hosting functions»

Basic funtions

including energy uses for rooms, offices, hall
not included extra-services: spa, laudary, swimming pool, ect.

Limit of energy performance related to «European Cliamtic Zones»

Map of European climatic zones

Primary Energy Limit (for Italy) **70** kWh/m²year of primary energy

Considered final energy uses:

- Heating
- Cooling
- DHW
- Ventilation
- Lighting
- Electric equipments

Co-funded by the Intelligent Energy Europe Programme of the European Union

Cost-optimal analysis

Category	3 stars		
City	Turin		
Number of beds	98		
Year of construction	1933		
Opening schedule	365 days/year		
Facilities	gym		
Occupancy	39% (average)		
Energy carriers	natural gas and electricity		

HOSTING FUNCTIONS !

ONLY FOR

TOTAL 233,5 kWh _p /m ² y	
Primary energy related to natural gas uses for DHW $65.9 \text{ kWh}_{p}/\text{m}^{2} \text{ y}$	
Primary energy related to natural gas heating $91,2 \text{ kWh}_p/\text{m}^2 \text{ y}$	
Electricity uses for cooling (primary energy) 27,3 kWh _p /m ² y	
Electricity uses for heating (primary energy) 11,6 kWh _p /m ² y	
Compulsory electricity uses (primary energy) 37,4 kWh _p /m ² y	

Conceptual approach

Matrix of EEMs

PACKAGES OF MEASURES

COMPONENT	ENERGY RETROFIT SOLUTION	ENERGY EFFICIENCY MEASURES	INVESTMENT COST [€]	ANNUAL COST [€/γ]	RESIDUAL COST [€]	GLOBAL COST [€/m ²]	EP _{GL} VALUE [kWh/m ² y]	ENERGY EFFICIENCY CLASS			
External walls	Insulating material into the cavity wall	U < 0,25 W/m ² K	44.493,8	7.118, 12.575 4.276, 2.443, 0,0 27.817,8 5.145, 4.355, 824,2			7.118,8				
Wall s to unheated spaces	Insulated false walls	U < 0,30 W/m ² K	78.601,2		12.575,8				Example package		
Ceilings to unheated attic floor	Upper ceiling surface insulation	U < 0,26 W/m ² K	26.725,9		4.276,0						
Ceilings to unheated basement floor	False ceiling	U < 0,26 W/m ² K	15.273,2		-		2.443,6				Envelope EEMs
Windows	Replacement	U < 1,2 W/m ² K	310.342,9		0,0			Class A	System EEMs		
Central heating system	Installation of district heating substations	Heat exchanger for heating (320 kW)	26.501,0		5.145,7	253,10	253,10 37,3 -86%				
		Heat exchanger for DHW (180 kW)	201302)0								
	Heat distribution and DHW system	Insulation of distribution system	27.223,5		4.355,6						
		Replacement of DHW storage (tank)	4.244,7		824,2						
	Heating control system Installation of automatic valves controlled by thermostats in each dwelling	External probe									
		6.396,0		1.241,9				6			

G

1

PACKAGES OF MEASURES

 $EP_{gl} = 61 \text{ kWh/m}^2 (-77\%)$ Global cost = 231 €/m²

EP_{gl} = 94 kWh/m² (-64%) Global cost = 264 €/m²

2

EP_{gl} = 160 kWh/m² (-**39%**) Global cost = 379 €/m²

 $EP_{gl} = 59 \text{ kWh/m}^2$ (-77%) Global cost = 269 €/m²

 $EP_{gl} = 45 \text{ kWh/m}^2$ (-83%) Global cost = 410 €/m²

 $EP_{gl} = 37 kWh/m^2$ (-86%) Global cost = 253 €/m²

 $EP_{gl} = 30 \text{ kWh/m}^2$ (-89%) Global cost = 286 €/m²

EP_{gl} = 19 kWh/m² (-93%) Global cost = 385 €/m²

THE COST OPTIMAL CURVE

SENSITIVITY ANALYSIS

Scenario 1: increase of prices for all energy carriers used with an annual percentage rate of 3% (European Commission, EU energy trends to 2030, 2009)

SENSITIVITY ANALYSIS

Scenario 2: variation of the discount rate

NEARLY ZERO ENERGY HOTELS

1 Hotel Cairo

	Interventions	Annual economic saving [€]	Initial investment cost [€]	Reduction in CO ₂ emissions [kg CO ₂]	Priority*
aintenance	Consumption reduction of the restaurant appliances	1.148	0		-
	No stand-by consumptions in unoccupied rooms	1.670	0	13.665	
Ĕ	Lower temperatures	2.239	0		

Maintenanc	e	of energy
appliances	not	optimized,
especially	for	unoccupied
spaces		

Control of the heating plant is performing bad

→ High temperatures (24°C) both for occupied and unoccupied spaces

No renewable energy systems

No domotic appliances for the lighting system

critical aspects

2 Grand Hotel Royal Terme di Valdieri

The energy demand of the structure is **entirely covered by renewable energy sources** (thermal hot springs)

The hotel owners has installed a **small hydroelectric power plant** which allow to use the water coming from the thermal source to produce heating, hot water and also electricity.

Only 10% of the thermal energy is used in the area!

2 Energy consumptions

Grand Hotel Royal Terme di Valdieri

Interventions	Energy consumption [kWh _p /m ³ y]
Current state	131
LED lighting system in rooms	128
LED lighting system In common spaces (24 h/d)	116
LED lighting system In common spaces (8 h/d)	121
Occupancy sensors in connecting spaces	122
Occupancy sensors in connecting spaces + LED lighting system	115
Thermostatic valves and connected devices	103
Combination of all interventions	74

CONSIDERING THE WHOLE BUILDING (not only for the hosting functions) !

Grand Hotel Royal Terme di Valdieri

Interventions	Annual economic saving [€]	Initial investment cost [€]	Reduction in CO₂ emissions [kg CO ₂]	Priority*
LED lighting system in rooms	755	7.560	1.479	low
LED lighting system In common spaces (24 h/d)	3.642	2.800	7.133	high
LED lighting system In common spaces (8 h/d)	2.405	5.600	4.709	medium
Occupancy sensors in connecting spaces	2.052	3.600	4.018	medium
Occupancy sensors in connecting spaces + LED lighting system	3.871	6.400	7.581	medium
Thermostatic valves and connected devices	6.728	9.800	13.175	high
Combination of all interventions	13.759	29.360	26.945	_

* As to cost optimal and break even point approaches

Interventions suggested

Regulation equipment of the heating plant badly performing

- \rightarrow High temperatures
- \rightarrow thermal discomfort
- \rightarrow opening of windows

No domotic appliances for the lighting system

Obsolete lamp bulbs

Electricity consumptions during the closing month (35% of the annual usage) caused by the power of the heating pumps (to prevent freezing of water pipes)

The electricity balance and The energy performance indexes are not yet defined as **the energy audit is in progress**.