

Machine learning in smart building operation

REHVA EXPERT TALK IN LIGHT AND BUILDINGS 08.03.2024 Frankfurt

Heikki Ihasalo

Prof. D.Sc.Tech., Aalto University & Innovation Director, Granlund Oy

Content

- Scope of the presentation
- Machine learning (ML) based control applications
- ML in fault detection and diagnostics (FDD)
- Current themes from research and practical perspectives

What is a smart building?

- Healthy indoor environment
- Energy efficient and flexible
- Ease of everyday life
- Learns based on data and feedback
- Future-proof
- Smart readiness indicator (SRI) one methods to measure smartness

(Source: European Commission)

Building operation and maintenance

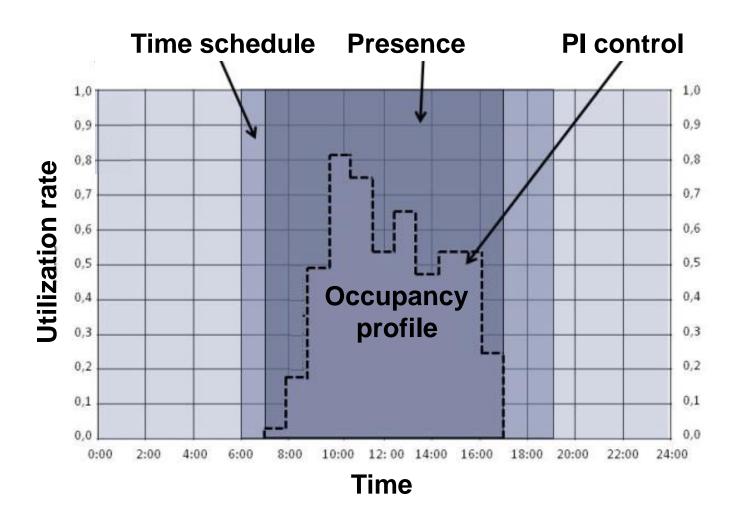
Buildings

- Largest asset class in the world, ~\$380 trillion
- 40% of energy consumption
- People spend 90% of time indoors

Operation and maintenance

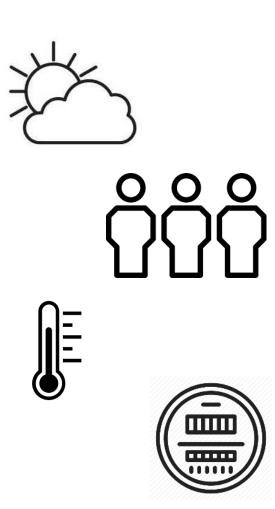
- "Cinderella" of the building industry
- Little glamour, unproductive and under budget cuts
- Operation = efficient use of systems → ML used in control and FDD
- Maintenance = inspections, cleaning and repair

Traditional control methods



ML application areas at sensor level

- ML used in estimates and predictions
- Weather
- Occupancy
 - Wifi and bluetooth
 - Camera
 - Indoor enviroment sensors
 - Data fusion
- Indoor environment
- Building and appliance energy consumption



Meeting room occupancy estimation using multiple sensors

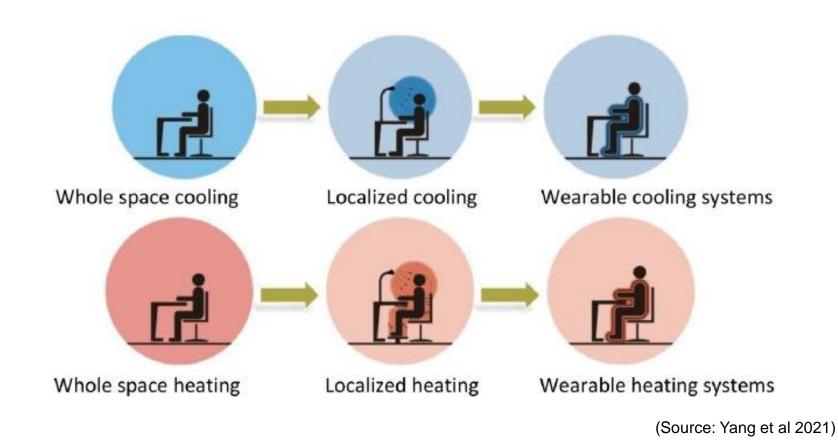
• Sensors	Model	features	Accuracy	RMSE
	KNN C	All no camera	0.7928	1.0179
People counting camera	KNN C	All	0.7838	0.8220
Passive infrared sensor	KNN C	Reduced	0.7838	0.8275
	KNN R	All	0.7748	0.8275
• CO2	KNN R	All no camera	0.7658	0.9910
Temperature	KNN R	Reduced	0.7297	0.7711
	RF C	All no camera	0.7207	1.0527
• Humidity	DT C	CO2 no camera	0.7207	0.6507
Volatile organic compound	DT C	CO2	0.7207	0.6712
	RF C	Reduced	0.7207	0.8436
 Supply and extract airflow 	I	I	I	I

• Supply and extract airflow

(Source: Mikala 2023)

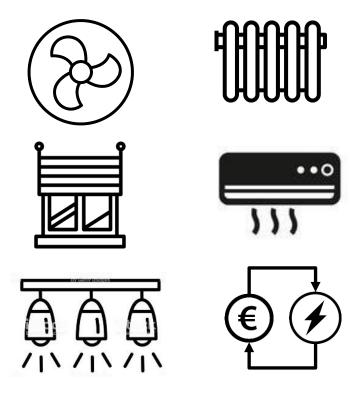
- Presence accuracy 95%, amount of people accuracy 79%
- RMSE = Root Mean Square Error ~ error deviation

Human as a sensor

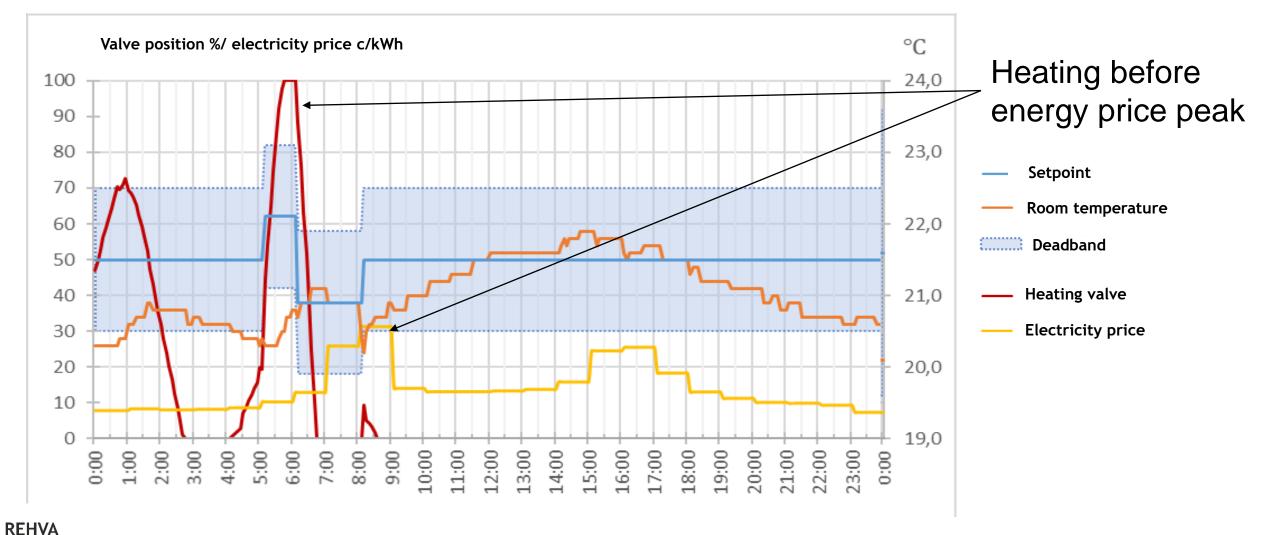


ML application areas at room/system level

- ML used in multi-objective optimization and predections
- Integrated room solutions
 - Shading, lighting and cooling
- System level energy, peak power and IEQ optimization
 - Heating
 - Cooling
 - Ventilation
 - Lighting



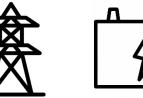
Room heating demand response



Federation of European Heating, Ventilation and Air Conditioning Associations

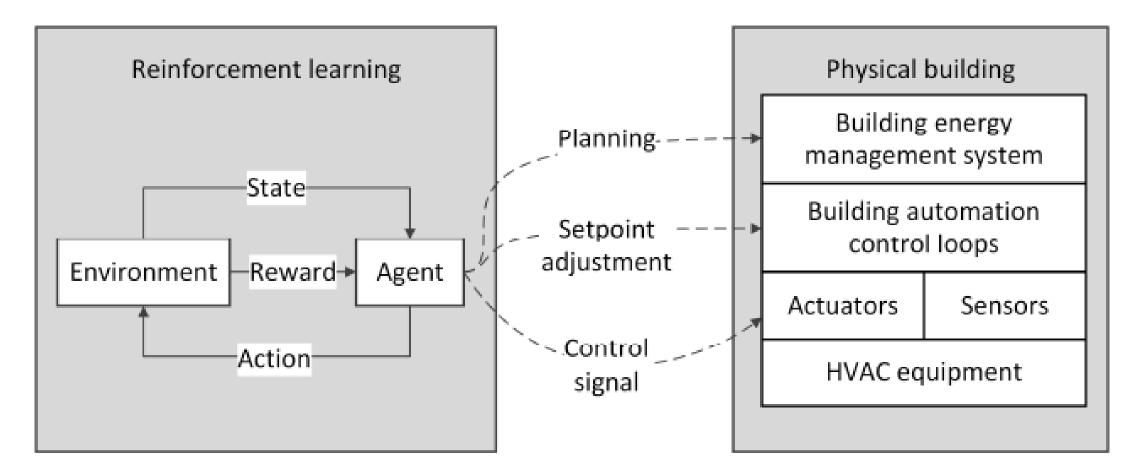
ML application areas at building level

- ML used in multi-objective optimization and predections
- Energy
 - HVAC and lighting
 - Energy storage
 - On-site production
 - Electric cars
- Demand response
 - Electricity; peak power, hourly price, reserve markets
 - Distric heating; peak power, seasonal price
- Neighbourhood level
 - Waste heat utilization





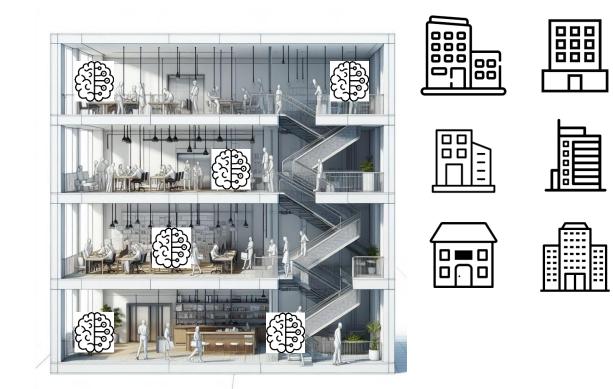
Reinforcement learning



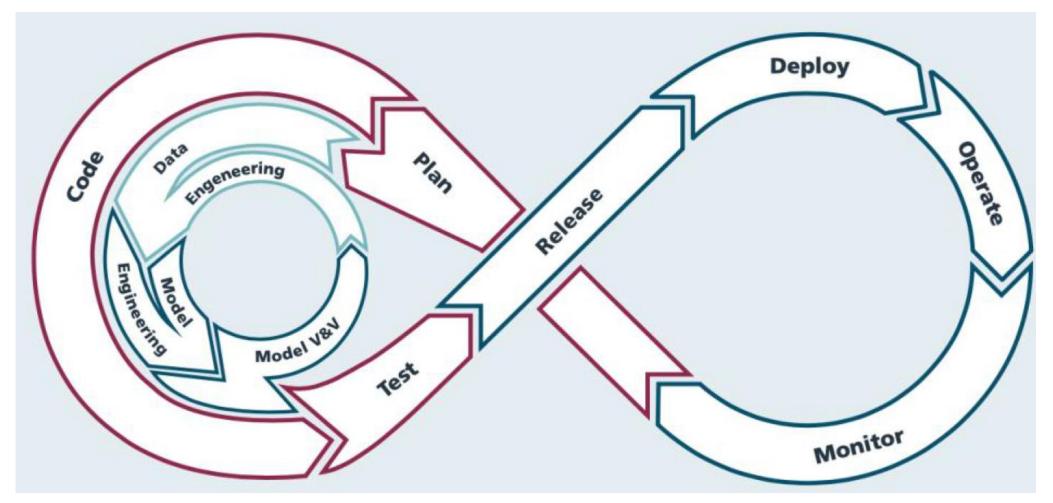
(Source: Sierla et al 2022)

How to manage large amount of different ML models in a changing envinroment?

- Every building is unique
- Different combinations of technical systems
- Tenant changes and renovations
- Usage of building changes



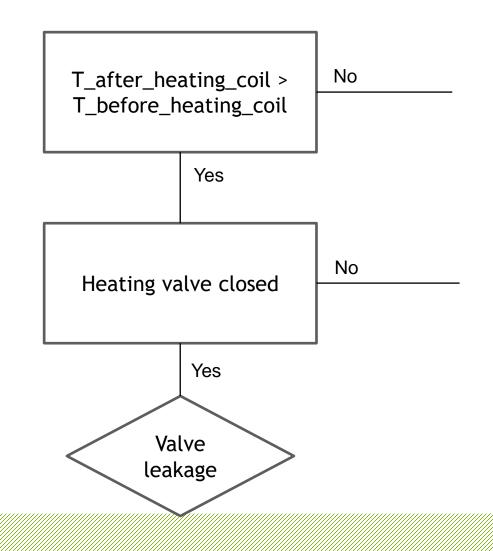
Machine Learning Operations (MLOps)



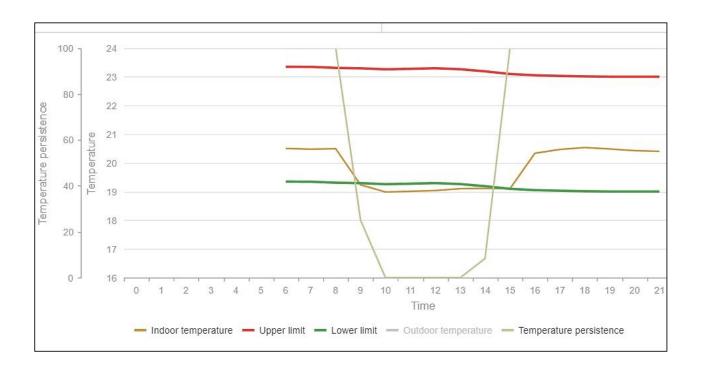
(Source: IML4E)

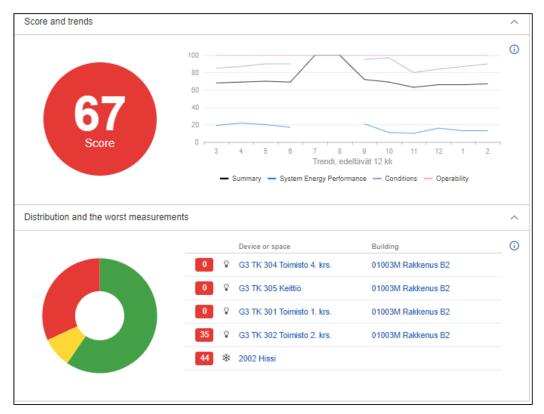
Fault detection and diagnostics (FDD) in buildings

- Background in the 80s
- Approaches
 - Model based
 - Knowledge based
 - Data driven

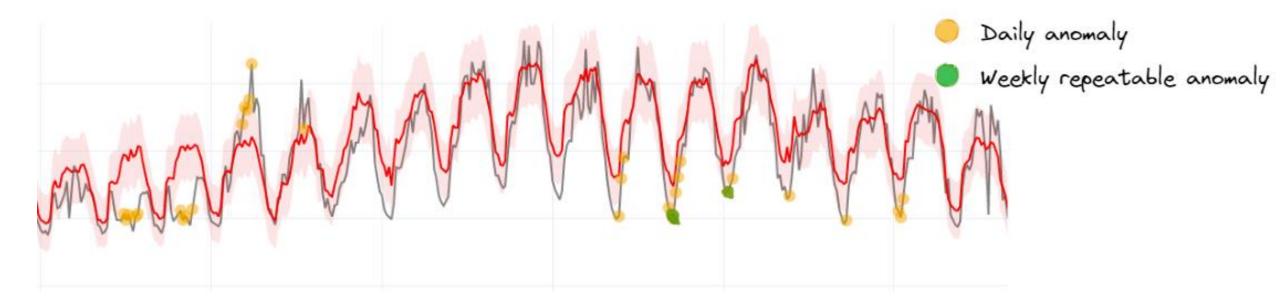


Knowledge based FDD

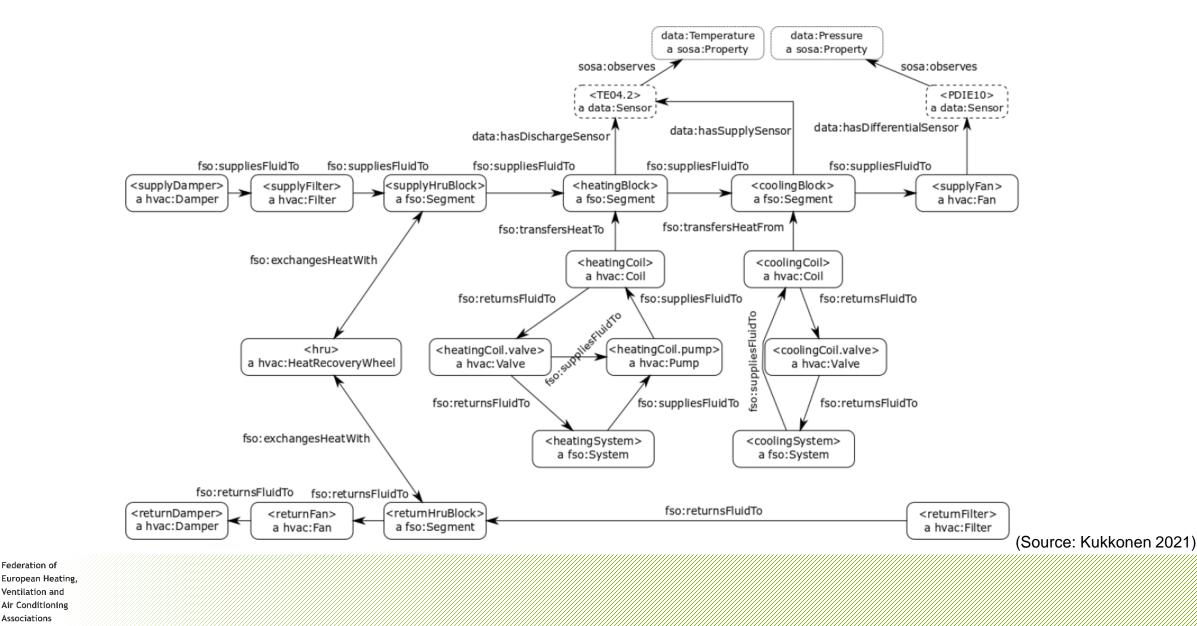




ML in detecting energy consumption anomalies



Ontologies to ease the implementation of FDD



REHVA

Associations

From fault detection to verifying the effects of corrective action

Contact information

Aalto University <u>heikki.ihasalo@aalto.fi</u>

https://www.aalto.fi/en/department-of-electricalengineering-and-automation/smart-buildingtechnologies-and-services

Granlund Oy <u>heikki.ihasalo@granlund.fi</u> <u>https://www.granlundgroup.com/innovations/</u>

Director of Innovations and Professor of Practice in Smart Buildings

