

ASHRAE-REHVA Guidebook Towards Zero Energy Hospital Buildings

Wim Maassen January 21st 2024

ASHRAE TC 9.6 meeting

Rijksdienst voor Ondernemend Nederland Stichting Promotie Installatietechniek (PIT)

Status

- All ASHRAE and REHVA reviewer comments were addressed beginning 2020.
- Permissions need to be completed for case studies and for pictures/tables.
- Lay-out needed to be adjusted to format ASHRAE

Updates

- 1. Include reference to Covid works such as the ASHRAE Covid material. Include references that offer energy efficiency such as UVC air cleaning which allows recirculation in places where it is currently not allowed such as Europe.
- 2. Refer to ASHRAE Decarbonisation task force and published material. Note Decarbonisation guide for hospitals (which Walt Vernon's group is doing for ASHRAE).
- 3. Refer to proposed ASHRAE Decarbonised hospital guidance work. Including possible NZC guide for hospitals
- 4. Check case studies are still relevant and update or amend if necessary

Updates

- 5. Refer to recently published and publicly available material such as the UK NHS Net Zero Carbon Standard and related material.
- 6. Note that HTM 07 is about to be updated this is known as Encode and covers energy usage/efficiency.
- 7. Note that the NHS are about to start a programme of training for Decarbonisation across all hospitals in England/UK.
- 8. Include new legislation e.g.: EU Energy Performance Directive IV, EU Taxonomy
- 9. Include Roadmap studies NL for Hospital Buildings achieving Net Zero in 2050

4 ASHRAE-REHVA Guidebook | January 21st 2024

Planning

- Jan 2024 => TC 9.6 to review and approve new scope at Chicago meeting in Jan 2024.
- Jan => draft updates, list of required permissions and list of case studies
- Feb-March => finalize content
- Apr-May => finalize lay-out and permissions
- Jun => submit GB to reviewers or for vote
- Jun => formal vote TC 9.6
- Sept 2024 => address comments finalize GB
- Oct 2024 => submit GB to ASHRAE Publication
- Jan 2025 => Publication of Guidebook => ASHRAE Winter Conference

Background and content of Guidebook

Next step (ASHRAE-)REHVA(-TVVL) Guidebook

7 ASHRAE-REHVA Guidebook | January 21st 2024

tion of ean Heating, tion and nditioning iations

WHAT?

- ashrae rehva guidebook nzeb hospital buildings
- 50 pages
- 50% practice / evidence
- reference is made to other guidebooks on detailed engineering
- focus on approach, method, risk management and quantification benefits (not only cost reduction but improvement of primary process)

Realizing a positive attitude to CO2 emissions reduction in hospitals and creating "can do" mind set using a pragmatic approach, method, measures and evidence to realize CO2 emission reduction in new Hospital Buildings.

Considering future hospital operation and challenging the standards and design requirements.

Providing academic evidence and real examples.

positive attitude"can do" mindsetpragmatic approach

future hospital operation challenging the standards

academic evidence real examples.

ASHRAE-REHVA Guidebook | January 21st 2024

Questions to be answered

- where do we stand with NZE hospital building design ?
- what approach and methods can be used to realize NZE hospital ?
- what requirements and standards are in place and need to be challenged ?
- what are major opportunities ?
- what are key research/development topics ?
- what examples indicate the relevance of this (effective hospital building design)
- Don'ts! No gas?

Taskforce and reviewers

REHVA TRC Taskforce

- Wim Maassen TVVL
- Frank Mills CIBSE
- Jarek Kurnitski EKVU
- Hans Besselink TVVL

REHVA TRC Reviewers

- Livio Mazzarella AiCARR
- Hywel Davies CIBSE
- Jaap Hogeling TVVL

ASHRAE TC 9.6 Taskforce

- David Eldridge
- Travis English
- Maya Salabasheva
- Heather Burpee
- Frank Mills
- Wim Maassen

ASHRAE TC 9.6 Reviewers

- David Schurk
- Paul Ninomura
- Amit Bhansali

Authors

- Travis English Kaiser Permanente (US) Author
- Maya Salabasheva Kaiser Permanente (US) Author
- Heather Burpee University of Washington (US) Author
- Kishor Khankari AnSight LLC (US) Author
- Frank Mills Low Carbon Design Consultants (UK) Chief Editor 2/Author
- Wim Zeiler TU/e (NL) Author
- Walt Vernon Mazzetti + GBA (US) Author
- Birol Kilkis, Baskent University (TR) Author
- Wim Maassen Royal HaskoningDHV, TU/e (NL) Chief Editor 1/Author

Seminar 'Ziekenhuizen op weg naar energieneutraal!'

🛗 vrijdag 30 november 2018 van 14:00 uur tot 19:00 uur 🛛 🖓 OWC Erasmus MC 🛛 🥸 Bijeenkomst, Landelijk, Derden

Programma

14.00 uur	Ontvangst met koffie en thee
14.30 uur	Welkom door Marije Hulshof en Erasmus Medisch Centrum
14.35 uur	'Duurzaamheid en energieconcepten in het Erasmus MC/Nieuwbouw' door Arjan Windhorst
15.05 uur	'Ziekenhuizen: Wakker worden! De BENG-eisen komen eraan' door Wim Maassen
15.35 uur	Pauze
15.50 uur	'Towards net-zero hospitals in the UK' by Frank Mills
16.20 uur	'The hope and possibility of net-zero hospitals in the US regulatory context' by Travis English
16.50 uur	Forum discussion (Arjan, Frank, Travis, Wim)
17.10 uur	Netwerkborrel
17.45 uur	(onder voorbehoud) Rondleiding nieuwbouw Erasmus MC

Seminar: Towards Energy Neutral Hospital Buildings! 120 paticipants, 10 different Hospitals

https://www.linkedin.com/feed/update/urn:li:activity:6476363043440717824

17 ASHRAE-REHVA Guidebook | January 21st 2024

- Preface Why Hospitals? Why Now?
- Introduction
- Approach
- Design solutions
- Commissioning
- Hospitals Moving Towards 2050
- Conclusions and Recommendations\
- References
- Appendix I Energy Measurements and Definitions
- Appendix II Case Studies
- Appendix III Theoretical case
- 18 ASHRAE-REHVA Guidebook | January 21st 2024

Introduction

Introduction

20 ASHRAE-REHVA Guidebook | January 21st 2024

Royal HaskoningDHV

21 ASHRAE-REHVA Guidebook | January 21st 2024

22 ASHRAE-REHVA Guidebook | January 21st 2024

23 ASHRAE-REHVA Guidebook | January 21st 2024

Approach

	Design solutions	FIGURE 5 S	elected air (change pe	r hour (ac	ch) rates (over the y	ears. ³											
_	Beergin eenaterie							H	STORICAL	AIR CHANG	E RATES II	N SELECTED	D NON-OPE	RATING OR	ISOLATION	SPACES (FOTAL ACH	OUTSIDE A	IR ACH)
	ACR		1959	1962	1964	1966	1968	1971	1974	1978	1982	1987	1991	1993	1997	2001	2006	2008	2013
		RECOVERY		4	4	4	15/6	15/6	15/6	6/2	6/2	6/2	6/2	6/2	6/2	6/2	6/2	6/2	6/2
		NURSERY	8 to 12	12	12	12	15/5	15/5	15/5	12/5	12/5	12/5	12/5	6/2	6/2	6/2	6/2	6/2	6/2
		ANESTHETIC Storage	2	2	-	8	8/8	8/8	8/8	8	8	8	-	8	8	8	8	8	8
		PATIENT Room	1.5	1.5	2	4/2	4/2	4/2	2/2	2/2	2/2	4/2	-	2/1	2/2	6/2	6/2	6/2	4/2
		INTENSIVE Care	-	-	-	-	6/6	6/6	6/2	6/2	6/2	6/2	-	6/2	6/2	6/2	6/2	6/2	6/2
		LORP	-	-	-	-	-	-	-	-	-	-	4/2	2	2/2	6/2	6/2	6/2	6/2
		PATIENT Corridor	-	-	-	-	-	4/4	4/4	4/4	4/2	4/2	4/2	2	2	2	2	2	2
		X-RAY D&T	-	6	6	10	6/6	6/6	6/6	6/2	6/2	6/2	6/2	6	6	6	6	6/2	6/2
		EXAM	-	4	4	4	12/6	12/6	12/6	6/2	6/2	6/2	6/2	6	6	6	6	6/2	6/2
		MED ROOM	-	-	-	-	-	-	-	4/2	4/2	4/2	4/2	4	4	4	4	4/2	4/2
		TREATMENT	4	4	4	12/6	12/6	12/6	6/2	6/2	6/2	6/2		6	6	6	6	6/2	6/2
		PHYSICAL Therapy	-	-	-	-	4/4	4/4	4/4	6/2	6/2	6/2	6/2	6	6	6	6	6/2	6/2
		SOILED Holding	-	3	3	4	12/4	12/4	12/4	10/2	10/2	10/2	10/2	10	10	10	10	6/2	6/2
		CLEAN Holding	-	-	-	3	12/4	12/4	12/4	4/2	4/2	4/2	4/2	4	4	4	4	4/2	4/2

25 ASHRAE-REHVA Guidebook | January 21st 2024

Design solutions

26 ASHRAE-REHVA Guidebook | January 21st 2024

■ Design solutions → Relative Humidity

27 ASHRAE-REHVA Guidebook | January 21st 2024

28 ASHRAE-REHVA Guidebook | January 21st 2024

Design solutions Airflow strategies

29 ASHRAE-REHVA Guidebook | January 21st 2024

Design solutions Natural ventilation

- Design solutions
 - Flexibility "PROSUMAGERS"

31 ASHRAE-REHVA Guidebook | January 21st 2024

Design solutions Summary

	Ste	ep 🛛	Measures						
	1.	User demand & Behaviour	Lower internal heat loads (more use of stand by mode), <u>smart zoning of the</u> <u>building</u> , smart positioning of building functions, <u>smart and individual control</u> <u>systems</u> (human in the loop, SR ventilation), low flow fume hoods, low energy consuming MRI, combining processes/equipment/test set ups, education of users						
	2.	Reduce Energy Demand	Insulation, envelope airtightness, heat recovery ventilation/hot tapwater, use daylight, thermal mass, positioning of functions and integral design to make application of technologies possible e.g. natural/hybrid ventilation of wards, better Air Handling Units, larger ducts to reduce ventilation energy, variable air flow systems (airflow management), LED lighting, Less heating and cooling (change standards), energy efficient appliances, less or no humidification (clay products for dehumidification in ceilings), use <u>BMS and monitoring</u> to reduce energy consumption and to show and guarantee that systems perform as they should, less tap water stations with hot water supply.						
	3.	Apply Sustainable & Energy Sources	Photovoltaic solar cells, biomass, wind energy, adiabatic cooling						
	4.	Energy Exchange & Storage	Long term energy storage in the soil/acquifer (LTES), short term energy storage (buffers, Phase Change Materials), Concrete Core Activation (TABS), Exchange energy between internal/external functions						
	5.	Efficient use of fossil energy	High efficient boilers, chillers, heat pumps, cogeneration of heat and power						
I.Jan	uarv	21st 2024	Roval HaskoningDHV						

32 ASHRAE-REHVA Guidebook | January 21st 2024

- Appendix II Case Studies
 - 🖰 Clark Regional MC May 2019 OWNER APPROVED Burpee.pdf
 - 🖰 GB Case Erasmus MC 190315 maassen.pdf
 - 🖰 GB case Bernhoven 190909 maassen.pdf
 - 🖰 GB Case UMCU Confidential 190909 maassen.pdf
 - 🖰 GB Case VUmc confidential 190405 maassen.pdf
 - Harrison MC May 2019 OWNER APPROVED Burpee.pdf
 - LPCH Stanford Case_Net Zero Book Jessica.pdf
 - 🖰 Medical Office Building, Santa Rosa, California USA.pdf
 - Cverlake MC May 2019 OWNER APPROVED burpee.pdf
 - Peace Island MC May 2019 CONFIDENTIAL WORKING DRAFT Burpee.pdf
 - Swedish Issaquah May 2019 CONFIDENTIAL WORKING DRAFT Burpee.pdf

Example of Case Study

	Hospital Building - with hospital functions: outpatient/inpatient-beds, surgery, etc.									
Building size:	207,000 m2 (?? S	beds:		um care)						
Building functions	Healthcare with bed	Healthcare without be	e Offic ed	es	Teach	ning	General (hallways,)			
	21 %	53 %		26 %						
Step 1: Match user Demand and Behaviour	Standby option for Operating Room, Pneumatic tube delivery system									
Step 2: Reduce energy demand Specific features of building envelope and architectural concept	High R-values for the façade (2.5 m².K/W), roof (3.5 m².K/W) and floors (4.0 m².K/W), Green roofs and roof gardens, Sun blinds									
Step 2: Building service systems	Heat Recovery i temperature dist meters, Pharmaf	n Air Han ribution sy ilter	dling Units, stems, Build	Concrete ing Manage	core a ement !	ctivation, Systems w	Low- and high- ith smart energy			
Step 3: Apply local renewable energy sources										
Step 4: Energy exchange and storage systems	Aquifer Thermal	Energy Sto	rage system							
Step 5: Use fossil fuel efficiently	District heating 7	0/40								
Delivered energy use (simulated), including both	Heating (spa heating a ventilation air)	ind	61 kWh/m²a	(Secol dan 1 25 Proces) darih 25	Visualize (and do tog) Assessment/adatom 25 Witable Process/arclasse 9					
regulated and not	Hot water		7 kWh/m²a							
regulated energy	Fans and pumps		53 kWh/m²a	C. Constant Provide State Stat						
4.545, KIIII II I	Cooling		7 kWh/m²a							
	Lighting		62 kWh/m²a							
	Appliances a medical equipme	ind int	kWh/m²a	Vien lander 26 Ri Generation						
	Total deliver energy	red				IB				
Delivered energy use (measured)	Total deliver energy (measure	red d)	kWh/m²a							
Energy uses not included in the delivered energy			N/A							
Exported energy, kWh/m²a			N/A							
Primary energy, kWh/m²a	Natural Gas (PEF=1.0)		85 kWh/m²a	Natural = 84.8 k	gas 9.6 Wh/m2	5 m3/m2 p per year	er year			
	Electricity (PEF=2.56)	4	89 kWh/m²a	Electrici	ty 191	kWh-e/m2	per year			
	Heat (PEF= 0.9)		77 kWh/m²a	Heating = 86.1 k	0.31 GJ Whth/n	lth/m2 per 12 per yea	year '			
	Total	6	51 kWh/m¹a	The ene part of t kWh/m ²	rgy co the Hos a (gas=	nsumption pital Dijk: 60; elec=	of the existing tigt (1961) = 666 433; heat= 173)			
	Primary ener (del exported)	rgy 0 kW	h/m²a	nZEB m building	inimum s 100 k\	n requirer Wh/m ² prir	nent for office nary energy			

Renewable energy ratio	0 % of energy need								
Improvement compared to national requirements	5,4 % Compared to NL EPC 2006								
Construction cost	??? M€ (??? €/m²)								
Additional cost of nZEB /Energy Measures	??? €/m ² estimated								
Business case	Building qualities: Safety first, Healing is leading, Sustainable is cheaper in the end.								
www.link	https://www6.erasmusmc.nl/nieuwbouw/?lang=en								
References	Presentation Arjen Windhorst (Erasmus MC), TVVL-Royal HaskoningDHV-TU/e Seminar Towards Zero Energy Hospital Buildings d.d. November 30 th Rotterdam (Erasmus MC) see https://www.tvvl.nl/l/library/download/urn:uuid:6d424c36-99a4-4bbe-a022- 5b21ce05eeca/arjant+windhorst+. +seminar+ziekenhuizen+op+wegtnaar+energieneutraal+- +181130.pdf?format=save to diskBext=.pdf								

Examples of measures according 5 step method:

Step	Measures
I. User demand & Behaviour	Lower Internal heat loads (more use of stand by mode), <u>smart zoning of the</u> <u>building</u> , smart positioning of building functions, <u>smart and individual control</u> <u>systems</u> (human in the loop, SR ventilation), low flow fume hoods, low energy consuming MRI, combining processes/equipment/test set ups, education of users
2. Reduce Energy Demand	Insulation, envelope airtightness, heat recovery ventilation/hot tapwater, use daylight, thermal mass, positioning of functions and integral design to make application of technologies possible e.g. natural/hybrid ventilation of wards, better Air Handling Units, larger ducts to reduce ventilation energy, variable air flow systems (<u>airflow management</u>), LED lighting, Less heating and cooling (change standards), energy efficient appliances, less or no humidification (clay products for dehumidification in ceilings), use <u>BMS and monitoring</u> to reduce energy consumption and to show and guarantee that systems perform as they should, less tap water stations with hot water supply.
 Apply Sustainable & Energy Sources 	Photovoltaic solar cells, biomass, wind energy, adiabatic cooling
 Energy Exchange & Storage 	Long term energy storage in the soil/acquifer (LTES), short term energy storage (buffers, Phase Change Materials), Concrete Core Activation (TABS), Exchange energy between internal/external functions
 Efficient use of fossil energy 	High efficient boilers, chillers, heat pumps, cogeneration of heat and power

34 ASHRAE-REHVA Guidebook | January 21st 2024

Content Guidebook - Recommendations

- Great opportunities to reduce CO2 emissions => pick low hanging fruits using 5 step method and knowledge and experience other building types e.g. offices
- Design starting with considering the human/users and the processes
- Reduce and manage internal heat loads

- Challenge standards and regulations because sometime lacks scientific evidence
- Simultaneous improve primary process and energy efficiency

Thank you!

More information: Wim Maassen MSc EngD wim.maassen@rhdhv.com M 06 537 05 294

ASHRAE-REHVA Guidebook | January 21st 2024