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Achieving Excellence In
Indoor Environmental Quality

e Physical factors
— Thermal Comfort
— Air quality (ventilation)
— Noise-Acoustic
— Illumination
e Personal factors
— Activity
— Clothing
— Adaptation
— Expectation
— Exposure time
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Indoor Air Quality and Thermal Comfort in
Zero Energy Buildings

e Thermal Comfort

- More uniform conditions (radiant asymmetry, vertical air temperature
differences)

— Less draught risk (reduced heat supply, no cold surfaces)
- Less difference between air and operative temperature
— "Over heating”
— Is individual room control important?
e Comfort
e Energy
e Indoor Air Quality
— Tighter buildings
— Cannot rely on infiltration
— Can you heat with the ventilation system?
e Air distribution
e Ventilation effectiveness
e Individual room control 1/C|(I1|E|E
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Effect of internal blinds
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Calculation concept and building-system
boundaries for heating EN15316-1

Energy performance of heating systems

Calculation direction (from the demand to the source)
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Heat generation system

7

e The calculation of losses from heat generation systems:

e Boilers EN15316-4.1
e Heat pumps EN15316-4.2
e Co-generation CHP EN15316-4.4
e District heating EN15316-4.5
e Solar heating EN15316-4.3
e Biomass EN15316-4.7
e Other renewables EN15316-4.6
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Residential - Brussels - Radiator 77/55-P(2) control- Condensing Boiler - Regulated Pumps

Aux. Gen.=4,0%
Aux distr. = 3,0 % —
we st ’ Total= 125 %

Generation =-1,0 %
Distribution = 5,0 %

Emission = 14,0 %

O Building

B Emission
O Distribution
O Generation
B Aux distr.
OAux. Gen.

Building = 100,0 %

Primary energy for a radiator system 77/55 (supply-return temperature),
thermostat with 2 K proportional band, condensing boiler and regulated pump.
85% of distribution losses are assumed to be recovered.



Residential - Bruxelles - Floor 35/28-ON-OFF(PI) control- no downward loss Condensing Boiler - Regulated Pumps

Aux. Gen. =4,0% T()tal = 107
Aux distr. = 5,0 %

Generation = -8,0 %

Distribution = 1,0 %

Emission = 5,0 %

O Building

B Emission
O Distribution
0O Generation
B Aux distr.
OAux. Gen.

Building = 100,0 %

Primary energy for a floor heating system 35/28 (supply-return temperature),
ON-OFF control, condensing boiler and regulated pump.
No downward losses. 85% of distribution losses are assumed to be recovered .
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CO2 EMISSION

For the calculation of CO, emission the following specific CO, emission, taken from “Energy and global

warming impact of HFC Refrigerants and Energy Technologies™ (AFEAS, DOE 1997), was used :

o For the valuation of the CO, emission of natural gas: a,, =136 [kgCO,/ m']

o Forthe valuation of the CO, emission in the production of electric energy, &, is showed in the

following table:

Table 7.1
o, 1kCO, | kW]
Stockholm 0,04
Brussels 0,29
Venice 0,59
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Radiant surface heating

and cooling systems
Floor Wall
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Renovation with radiant heating and cooling

i

15 DTU Civil Engineering, Technical University of Denmark June 16 - 2009



=
—
[—

i

European Audit Project to Optimise Indoor Air Quality
and Energy consumption in Office Buildings

Sensory pollution load- perceived air
quality

[0 Materials and
activities
W Outdoor air

B Occupants

E Ventilation
system
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Odds Ratio of
SBS-symptoms

2
1
O r | | i | I | i | | | i i i | | L |
0 10 20 30 40 50 60
Outdoor air flow
rate, L/s, p

Figure 1. Adjusted odds ratio of SBS for low outdoor air flow rate in commercial buildings [3]
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Concept for calculation of =
design ventilation rate

People Component Building Component

Breathing Zone
Qutdoor Airflow

vbz == + RaAz
A
Minimum Ventilation Z
l/s/Person Smoker Building Area
Number of Number of Minimum |/s/m?
People Smokers —
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Basic Ventilation

e

Airflow for building emissions pollutions

(1/s/m?)
Category Airflow per|Very low | Low Non low
person polluting polluting polluting
|/s/pers. building building building
I 10 0,5 1 2
I 7 0,35 0,7 1,4
11 4 0,2 0,4 0,8
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Total outdoor airflow (V,,.),

Vit =V, /&
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Ventilation today ...
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Drinking
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J1U
wound Movable
Panel
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Ventilation Effectiveness
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CI _Cs
CEN Report CR 1752 (1998)
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Personalized ventilation
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T supply - | Vent. effect. [ T supply - | Vent. effect. | T supply - | Vent. effect. | T supply - | Vent. effect.
T inhal T inhal T inhal T room
°C - °C - °C - °C -
<0 09-1,0 <-5 0,9 <0 1,2-14 -6 1,2-22
0-2 0,9 -5-0 09-1,0 0-2 0,7-0,9 -3 1,3-2,3
2-5 0,8 >0 1 >2 0,2-0,7 0 1,6 -3,5
> 5 0,4-0,7
1{C E|E




Personalized systems
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AIR CLEANING
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Filters

Photo catalytic Oxidation (PCO)
Electrostatic

Desiccant air cleaners

Others
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Hypotheses
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SVOCs in gas phase

Unreacted SVOCs
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Photo catalytic Oxidation (PCO)
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contaminants I reaction final products
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Results: Bldg mat, PCs, filters
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Results: Human bio effluents
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Natural
mineral
water
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“-\IR CLEANING

e The criteria for the ventilation rates are mainly based on
percelived air quality PAQ, which is measured by a human test
panel.

e It is therefore also important to be able to test the air
cleaning efficiency in relation to the perceived air quality.

e The air cleaning efficiency can be expressed as:

[

* €ppq =Qo/Qap (PAQ/PAQ,p-1)-100 %

e where

o €paQ air cleaning efficiency for perceived air quality

. Q. ventilations rate in I/s

¢ Qap

o PAQ perceived air quality without the air cleaner, decipol
. PAQ,p perceived air quality without the air cleaner, decipol
[

e The Clean Air Delivery Rate is calculated as:

L CADR = SPAQ'QAP'(3,6/V) h_l

e where

J Qap* air flow through the air cleaner I/s

[ J

V volume of the room m3.
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Demand Controlled Ventilation

e Commercial buildings
—-Level of occupancy
e Residential buildings
-Time of day (at home, outside)
—QOccupied room (living room, bedroom)
e Need for more representative sensors
e Control concepts
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Measured - Predicted Energy
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Investigation of heat consumption in 290

identical houses

e Highest consumption
up to 20 times higher
than lowest

e Savings

e 90 % if all use same
as lowest consumer

* 45 9% if all use same
as the 10 % lowest

30 % if all use same
as the 25 % lowest

42 DTU Civil Engineering, Technical University of Denmark
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Occupant Behaviour

e Can impact the energy consumption with a factor 3-6
e Often main reason why predicted energy use do not match measured energy use

e Assumptions regarding occupant behaviour are used as input parameters to energy
calculation

— Set point
— Window opening
— Solar shading
— Time of occupancy
- Etc.
e A topic dealt with by IEA ECBCS Annex 53

43 DTU Civil Engineering, Technical University of Denmark TUe/DTU meeting. 29 Sep 2009



Simulation of the effects of occupant
behaviour on indoor climate and energy
consumption

eThe simulated occupant could manipulate four
different environmental controls
—table fan
-window opening
—-Blinds
—Heating
etwo personal controls
—clothing insulation
—-metabolic rate

e All control actions were carried out with the aim
of keeping the PMV value within predefined
limits

44 DTU Civil Engineering, Technical University of Denmar k TUe/DTU meeting. 29 Sep 2009



Simulations - Behaviour patterns and criteria

Criterion

Behaviour
pattern 1

Behaviour
pattern 2

A (-0.2<PMV<0.2)

Simulation 1A

Simulation 2A

B (-0.5<PMV<0.5)

Simulation 1B

Simulation 2B

C (-0.7<PMV<0.7)

Simulation 1C

Simulation 2C

. Behaviour pattern 1:

Energy expensive

Behaviour pattern 2:

Energy efficient

PMV

0.7

-0.7

Simulation2C
0.7
A 0.6
A05
A0.4
®0.3
®0.2
@ 0.1 >
= 0
@ -0.1 o
®-0.2
®-03
A-04
A-05
A -0.6
- - - -0.7
Tablefan Windows  Blinds Clothing Metabolic Heating
rate
A On value (1/high) @ Off value (0/low)

Simulation1C

AO0.1

® 0.6
@ 0.5
@04
AO03
AO02

A-01
A -0.2
A -0.3
®-04
® .05

® -0.6

Tablefan Windows  Blinds Clothing Metabolic Heating

rate

AOn value (1/high) @ Off value (0/low)




Simulation of the effects of occupant behaviour
on indoor climate and energy consumption

3
2
1
S
o 0 (o
-1 — —1A —--2A —
1B 2 B
-2 ----1C 2C o
No control
-3 | | | |
0% 20% 40% 60% 80% 100%

Time [Y%age of year]

Duration curves for the PMV index in the 6 simulations and for the
reference simulation. The figure shows how long time (in percentage of
a year) the PMV index was below a certain value.
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Results - Energy

& 5000
b o= ]
e 8 4000 | 3948 3891 3882 Behaviour
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- & pattern
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.a-g- 8 El 2000 - 198 m efficient

1000 -

O _
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Criteria

-Simulated behaviour patterns - realistic?
-Drivers behind behaviour?
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Occupant behaviour and energy consumption

e Simulation study: -

—Occupant behaviour
can affect energy
consumption by more
than 300 %

e Literature survey

—In identical dwellings,
the highest energy
consumption is

typically 2-3 times as

high as the lowest \) ‘)
- Differences as high as ﬂ v ﬂ

600 % has been #

observed
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Behaviour changes as a tool of energy conservation?

o]s it possible to achieve energy
savings by facilitation of
behaviour changes? t

o

I

M3 Jlr." !!)iﬁiE‘.

eCan direct and current
information about
consequences of actions
facilitate behaviour changes?

e \Will information about actual
price of heating and advice
about behaviour facilitate
changes in habits?
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Summertime classroom Tin° C
(NB: Different classes with natural/mechanical ventilation)

30

25 C——-
\. <B-No AC

- =AC

15

Off Low High
Mechanical ventilation
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Hours/week with windows open
(NB: Different classes with natural/mechanical ventilation)

15
" \
10
-#-No AC
/ - -AC
5
0

Off Low High

Mechanical ventilation
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Hours/week with windows open
(NB: different classes in winter & summer)

10

B
8 —
6 #-Summer
4 - =Winter
5 —
0

Low High

Ventilation (with no cooling)
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Indoor Air Quality and Thermal Comfort in
near Zero Energy Buildings

e Thermal Comfort

- More uniform conditions (radiant asymmetry, vertical air temperature
differences)

— Less draught risk (reduced heat supply, no cold surfaces)
- Less difference between air and operative temperature
— Is individual room control important?
e Comfort
e Energy
e Indoor Air Quality
— Tighter buildings
— Cannot rely on infiltration
— Can you heat with the ventilation system?
e Air distribution
e Ventilation effectiveness
e Individual room control

I1|C|I|E|E
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If an energy efficient measure also improve the
indoor environment it will

Lower Health Risk
‘Increase Comfort

« Increase Productivity

« Always be cost efficient.
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Thank you for your attention!
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