

Presentation in the REHVA seminar
HVAC for Net Zero Energy Buildings
at ISH Frankfurt March 17, 2011

Sorption technology in energy recovery in AHU's

Enventus Company Profile

- Manufacturer of Rotating heat exchangers, heat wheels
- Turnover 11 Mio Euro (2009)
- 60 employees
- Annual production over 20'000 rotors
- Delivered approx 250'000 rotors over the years
- 3000 m2 production area in Sweden
- 1000 m2 assembly plant in Kunshan, Shanghai, China
- Market position: Leading Scandinavian supplier Number 2 in Europe

Advantages of sorption technology

- 20-40% lower cooling capacity need for AHU's
- Energy saving in the summer time
- Energy and capacity saving when humidification is needed
- Better air quality (higher humidity) in winter time

Definitions according Eurovent certification program

- Condensation rotors,
 non hydroscopic
 no designed humidity transfer properties
- 2. Enthalpy / Hydroscopic rotors, low to medium humidity transfer efficiency
- 3. Sorption rotors, high humidity transfer efficiency

for the

CERTIFICATION

of

ROTARY HEAT EXCHANGERS

The class "sorption rotor" has to fulfil specific additional requirements on the latent efficiency: Under all tested conditions with nominal airflow rate the latent efficiency has to be at least 60% of the sensible efficiency. Rotors which have lower latent efficiency only can be certified in the class "enthalpy rotor / hygroscopic rotor".

Humidity efficiency of different types

ST1 = Condensation

STE1 = Hydroscopic

HX1 = Sorption

Sorption Rotors (HX1 and HM1)

- Active coating on the sorption foil for sensible and high humidity recovery
- The humidity transfer of the sorption rotors is a physisorption process on a very high active surface.
- There is no chemical process, the catch of molecules is based on Molecule size and weak atomic forces

Sorption material, Silicagel HX1

- Commonly used material in packing and drying applications, SiO₂
- 1g adsorbent equal to approx. 700 m²,
 We use silica gel 15 g/m² aluminum
 1m² surface = 1.5 football fields
- Extreme high humidity efficiency, especially at high RH level
- Wide distribution of pore sizes
- Is not selective on what it adsorbs

Sorption material, Molecular sieve HM1

- Functional group of materials
- Widely used adsorbent in chemical industry.
- Engineered structures to specific function, pore size defined
- In HVAC applications use 3-10Å pore sizes for water (2.7Å)
- We use (AlO₄) and (SiO₄), 3Å
- High humidity efficiency
- Very selective to adsorb only water molecules

tetrahedras of (AlO4) and (SiO4) (source: Grace website)

Outdoor air temperature °C, RH 50%

Case 25°C/50%, 33°C/50%

air flow 36000 m³/h, Rotor 2950 mm, 1.7 mm, 3.0 m/s

Explanantion	Condensing rotor	Sorption rotor	Difference
Temp efficiency	75.0%	75.0%	0 %
Humidity efficieny	0%	72,7%	72.7%
Pressure drop	156 Pa	204 Pa	48 Pa
Δ Entalphy	6.2 kJ/kg	17.3 kJ/kg	11.1 kJ/kg
Capacity / m3/s air	7.4 kW/ m ³ /s	20,8 kW/ m ³ /s air	13.4 kW/ m ³ /s air
Humidity transfer	0	3,6 g/s / m³/s air	4.4 g/s / m ³ air

Cooling capacity saving 13.4kW / m³/s air. (20.8 if condensing rotor not used in Summer)

Increase of power consumption due to pressure drop increase 0.2 kW/m³/s air

Pay back time

The investment cost of additional cooling capacity is about 100-200 Euro/kW

>>> The capacity savings due Sorption's rotor was 13 kW/ m³/s giving investment savings of **1300-2600 Euro/m³/s**

Additional investment for Sorption treatment is 400-800 Euro/ m³/s

With 400-800 Euro investment 1300-2600 Euro savings
=
0 days pay back time

There is no additional investment from the system perspective.

To compensate the energy cost of the pressure drop increase we need 3-5% cooling full capacity utilization or total utilization time of AHU or 5- 10 years of AHU without any use of cooling capacity.

Where to use sorption technology

- ✓ Installations where cooling is required
- ✓ Regions where peak load management is a topic (capacity shortage of installed power from utilities)
- ✓ Chilled beam, chilled ceiling, dry cooling fan coils applications
- ✓ Whenever humidification of supply air is required
- ✓ Existing installation where chillers capacity is limited and causing problems in summer time

...more info and downloads:

www.enventus.com

Thank you for your interest!

Questions?

