
Space heaters *(central, hydronic, incl. combi)*

Water Heaters (dedicated)

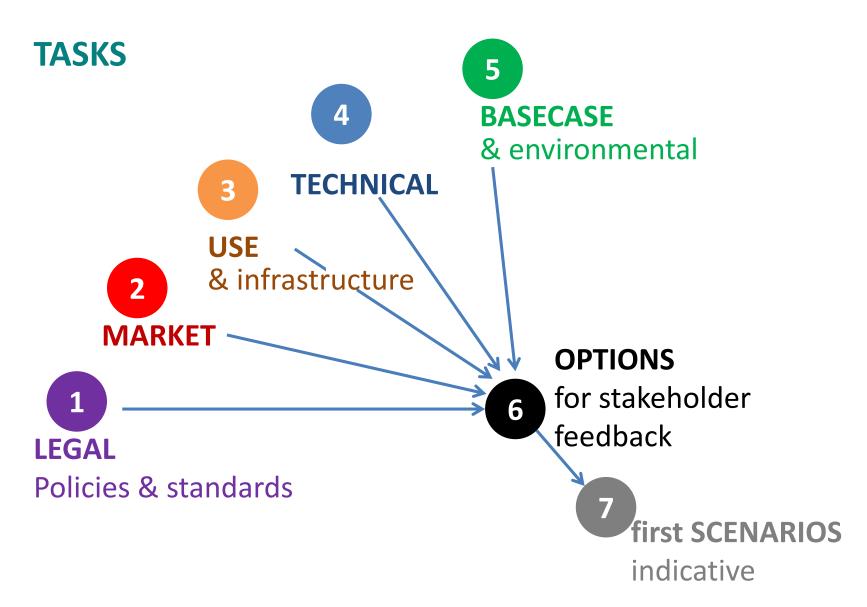
Ecodesign and Energy Label

preparatory review studies

René Kemna

Review study Commission Regulation (EU) No. **813/2013** [Ecodesign] and Commission Delegated Regulation No. (EU) No. **811/2013** [Energy Label]

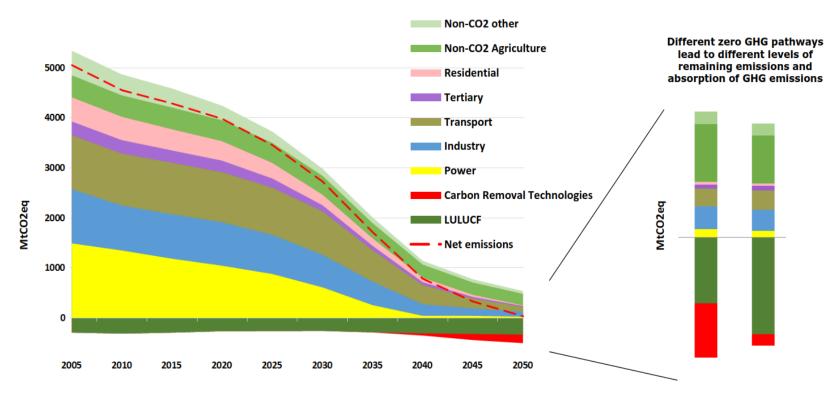
Review study Commission Regulation (EU) No. **814/2013 [Ecodesign]** and Commission Delegated Regulation No. (EU) No. **812/2013 [Energy Label]**


Studies prepared by VHK (NL) in collaboration with BRG Building Solutions, London (UK) for the European Commission DG ENER.

Project sites: www.ecoboiler-review.eu www.ecohotwater-review.eu

The information and views set out in this study are those of the author(s) and do not necessarily reflect the official opinion of the European Commission

Space heaters hydronic, central



'Paris': Carbon-neutral in 2050

By far the most ambitious environmental goal ever

POLICIES

1

EC vision document 28.11.2018 (for heating):

Electrification, carbon-neutral gases (hydrogen etc.), biomass, distributed heat, solar

(source: COM(2018) 773 final, 28.11.2018)

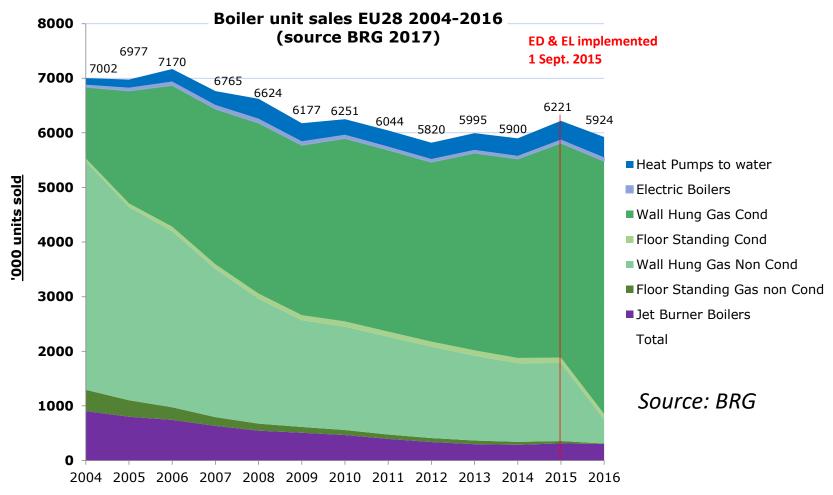
Realistic, Repeatable, Reproducible

STANDARDS

1

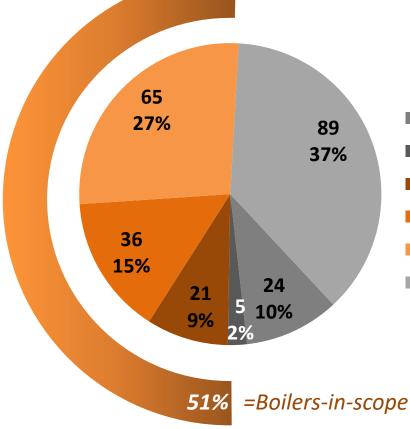
ECOtest-project Gas-fired (left) and oil-fired (right) boiler test rigs.

- Verification tolerances (ECOtest project),
- Harmonised test conditions and calculations across heat generator types
- Simplification and transparency (e.g. new solar method)
- Hybrids/packages are the new default
- Realistic: Space heating for existing buildings top-priority

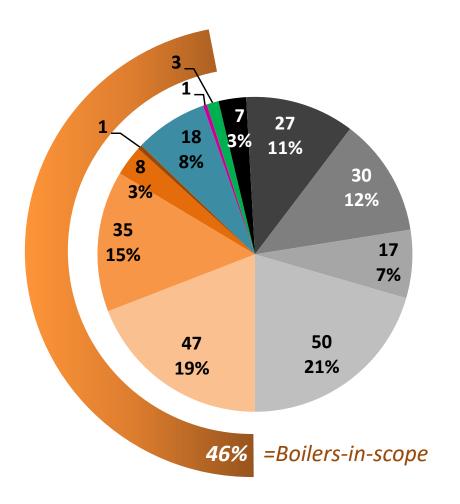


ECOtest-project Gas Absorption Heat Pump (GAHP) test rig

Better new market data


unique BRG input, EHI support, new Eurostat data

USE


Half of EU dwellings has (combi-) boiler based hot water

- District heating hot water
- Cylinders (+ solid fuel)
- Collective heat (+boilers)
- Cylinders (+ other boilers)
- Combi-boilers
- Dedicated water heaters

EU-28, 2014, in mln.dwellings, source BRG 2017

3 Almost half of EU dwellings has USE boiler based space heating

- GAS Wall Hung non-condensing
- GAS Wall Hung condensing
- GAS Floor Standing non-condensing
- GAS Floor Standing condensing
- OIL/GAS Jet burner (85-90% oil)
- ELECTRIC CH boilers
- ELECTRIC HEAT PUMP CH boilers
- SOLID fuel boilers
- District
- Collective
- Individual dry gas/electric
- No CH (local heating + no heating)
- EU-28, 2014, in mln. dwellings, source BRG 2017

Space heating is more than only dwellings

EU SPACE HEATING LOAD 2010: 2860 TWh **EU total** $A_{c} = 13.3 \text{ bn m}^{2}$ Data refer to FU-28 heated A= 32.8 bn m² S= 48.8 bn m² volumes and surfaces (inner V=114 bn m³ dimensions) at equivalent SV=0.43 of 18 °C indoor temperature (24/7);14% 65% 21% Industrial Residential Tertiary AG= ground floor area; $A_{G}=2.9$ bn m² $A_{G}=7 \text{ bn } \text{m}^2$ A_{G} =3.4 bn m² A= total floor area; $A = 3.5 \text{ bn m}^2$ A= 21.2 bn m² $A = 8.1 \text{ bn m}^2$ S= shell surface; $S = 6.7 \text{ bn m}^2$ $S = 31.7 \text{ bn m}^2$ $S = 10.4 \text{ bn m}^2$ V= volume; V=20 bn m³ $V=32 \text{ bn m}^3$ $V=62 \text{ bn m}^3$ SV= S/V ratio. SV=0.33 SV=0.32 SV=0.51 bn= 1000 million

TECHNICAL

Efficiency-numbers too optimistic

- Emitter Capacity to Heat Load (HL/EC ratio) sets limits,
- Flow & temperature controls assumed optimal,
- System feed & return temperatures optimised for best testing
- Main focus New Built & floorheat, not Existing & radiators

Pro <u></u>	ject-name	Seasonal Performance Factor (SPF) Outdoor air HP Ground Source HP	N units	Period
HP <mark>Existing</mark> Buildings		2.1 2.6 3.3 2.2 3.5 4.3	35 36	2008-2009
Built	HP Efficiency	2.3 2.9 3.4 3.1 3.9 5.1	18 56	2007-2010
New Bu	HP Monitor	2.4 3.1 3.2* 4.2 3.0 4.0 4.3* 5.4	35 45	2012-2013

Fraunhofer Heat Pump Field Test results 2007-2013

Still large innovation potential

- Storage PFHRDs for water heating
- Hybrids (HP&gas&solar) for flexible energy mix and high η
- Hydrogen-ready boilers & hybrids -> Carbon-neutral
- TD (Thermally Driven) HPs, Fuel Cells, etc.

Intergas: Boiler with storage PFHRDs \rightarrow 110% efficiency (on GCV)

BDR Thermea: 100% Hydrogen Boiler

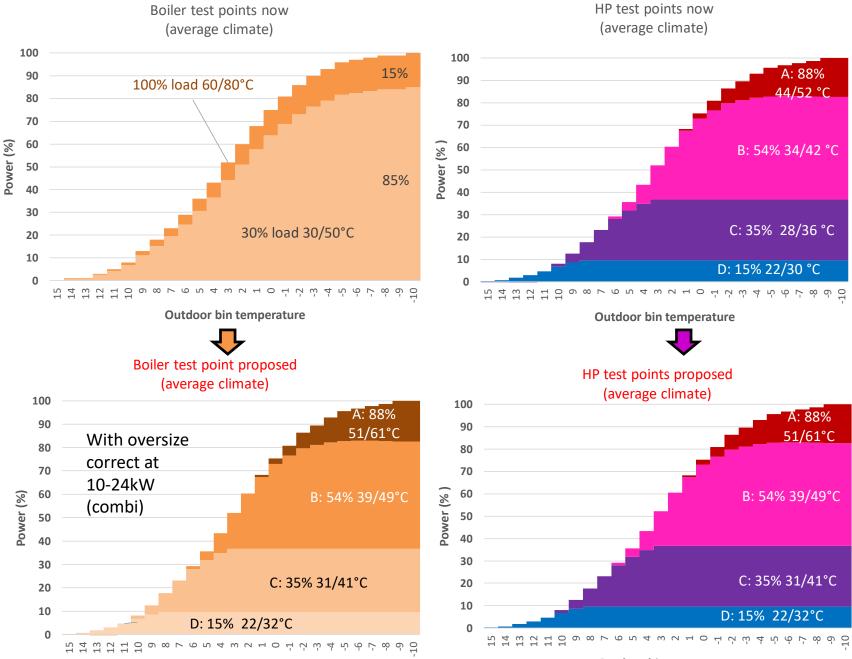
Hydrotop: Integrated HP for sloping roofs

GWP (% of life cycle emissions) Production Manufacturing Distribution/maint. Use/electricity Use/fuels Use/Service-repair EOL/refrigerants EOL/materials

2021 Label factor & icon

Not for mix-in but **100%** = **100%** carbon-neutral (Green **H**₂, ex-ante CCU possibly in the interim)

Verification tolerances 2021: Gas instantaneous can be stricter; storage-based products are possibly critical. New formula for NOx? Follow up needed



Labelling: Correction for PEF 2.1. Proposal to use empty energy classes for more differentiation in current A (condensing) and A+ class (see next slide). No convergence with stakeholders yet: Some want no change. Others want more change.

Ecodesign: No new technology-specific limits. But use progress in HP for higher feed T (65°C) \rightarrow better for existing buildings & water heating + helps align heat pump and gas boiler \rightarrow easier to make & calculate hybrids.

<u>Package-calculation based on bin-method is the new default</u> \rightarrow calculated ED & EL limits depending on capacity of heat generator(s) in the product.

Outdoor bin temperature

Outdoor bin temperature

Low Temperature (35°C) HP & Boiler - test conditions

UNCHANGED [typical Floor heating, New Built]

Ę		o in % of nomina CV @60/80°C retu temperature)	. , ,	Indoor heat exchanger return/supply temperatures Fixed outlet Variable outlet****						
Test Condition				°C	°C					
	A	W	С	All climates	A	W	С			
Α	Osize*88	n/a	Osize*61	30/35	29/34	n/a	25/30			
В	Osize*54	Osize*100	Osize*37	30/35	25/30	30/35	22/27			
C	Osize*35	Osize*64	Osize*24	30/35	22/27	26/31	20/25			
D	Osize*15	Osize*29	Osize*11	30/35	19/24	21/26	19/24			
G	n/a	n/a	Osize*82	30/35	n/a	n/a	27/32			

Osize is Oversize factor due to the combi oversizing effect, where Osize=1 for boilers with $P1 \le 10kW$ or Osize=1/2.4 for boilers with P1 > 24kW or Osize=1/[1+(P1-10)/14] for boilers with $10kW > P1 \le 24kW$

For heat pump Osize=1

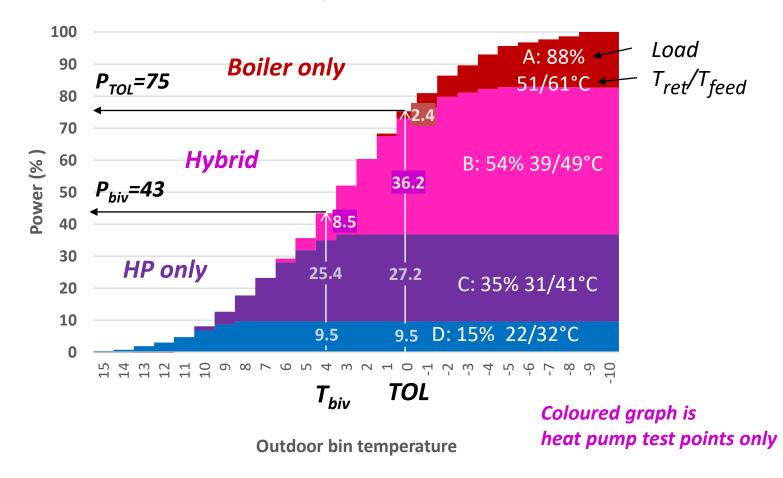

Look-up table Average Climate (bin-method): When you know P, Tbiv and TOL of the heat pump, you know the COP of a heat pump/boiler hybrid in the bin-method

Table A																										
j	46	45	44	43	42	41	40	39	38	37	36	35	34	33	32	31	30	29	28	27	26	25	24	23	22	21
Tj (°C)	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	-1	-2	-3	-4	-5	-6	-7	-8	-9	-10
plrj(%)	0.1	0.4	0.8	1.3	2.0	3.5	4.4	5.2	5.5	6.1	6.2	8	8.6	8.3	7.8	7.2	5.5	5.5	3.1	3.4	2.7	1.1	1.0	1.0	1.2	0
Plj (%)	4	8	12	15	19	23	27	31	35	38	42	46	50	54	58	62	65	69	73	77	81	85	88	92	96	100
hj (h)	74	105	151	169	215	315	335	348	326	330	303	356	357	320	280	240	173	165	89	91	68	27	24	23	25	1
qj (%)	0	1	1	3	5	8	13	18	23	29	36	43	52	60	68	75	81	86	90	93	96	97	98	99	99	100
Dj	0.2	0.7	1.8	3.0	4.6	6.7	8.5	9.5	9.5	9.5	9.5	9.5	9.5	9.5	9.5	9.5	9.5	9.5	9.5	9.5	9.5	9.5	9.5	9.5	9.5	9.5
Cj	-0.1	-0.2	-0.4	-0.4	0.0	1.4	4.0	8.2	13.6	18.5	22.3	25.4	27.2	27.2	27.2	27.2	27.2	27.2	27.2	27.2	27.2	27.2	27.2	27.2	27.2	27.2
Bj										1.2	3.7	8.5	15.4	23.7	30.7	36.2	39.9	43.0	44.4	45.5	46.1	46.2	46.2	46.1	45.9	45.8
Aj															0.9	2.4	4.2	6.7	8.4	10.7	12.8	13.8	14.8	15.9	17.4	17.5
COP(Tj)	=(Aj+Bj+Cj+Dj)/(Aj/COPA+Bj/COPB+Cj/COPC+Dj/COPD)																									
eta(Tj)	= (Aj+Bj+Cj+Dj) /(Aj/etaA+Bj/etaB+Cj/etaC+Dj/etaD)																									

j=bin number Tj=bin (outdoor) temperature plrj(%)= bin part load ratio Plj(%)=accumulated plrj hj=bin hours qj=accumulated part load (% of rated output) Aj, Bj, Cj, Dj = weighting factors for COPA, COPB, COPC, COPD in bin j (accumulative) COPA, COPB, COPC, COPD =COP at test conditions A, B, C, D COP(Tj) = COP in bin j eta (Tj) = eta in bin j (otherwise etaA etc. as COPA etc.)

Look-Up Table (illustrative example)

(average climate)

Simpler solar heat (installer) label : The present label & calculation method isn't helping

Extend scope from 400kW to 1 MW <u>:</u> Cover the gap with MCP directive (emissions) and add 15% to energy saving scope

Extend non-condensing exemption to C4/C8 or support chimney renovation ?: Report lists arguments and options.

mCHP efficiency: =electric efficiency (kWelectric out/kWin GCV) x 2.65 + heating efficiency (kWheat out/kWinGCV) x 1 Show electricity out etc. on the mCHP label.

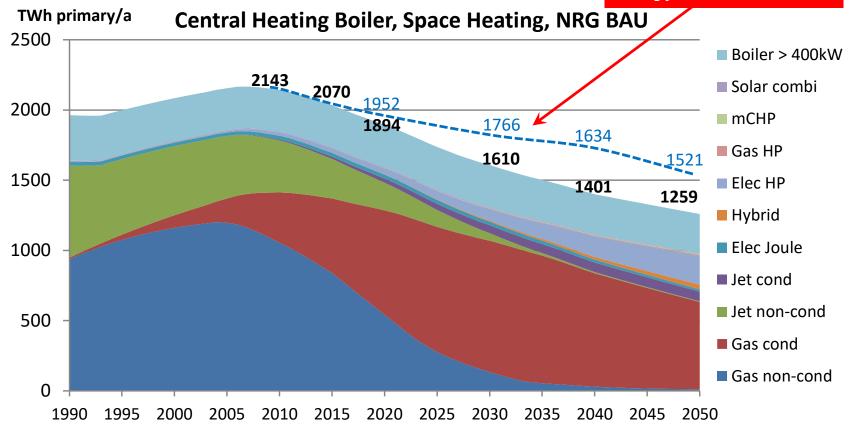
Energy Label 3XL/4XL: No double testing needed

NOx limits: Correction factors on NOx-limits for 3rd family gases

Sound power limits heat pump: To be better defined

OVERALL: Combi in one water heating regulation with Dedicated WH.

PFHRD: Use draft prEN to implement storage type


???: Solar PVT and PV, 3rd party verification, new ED item: Emitters

7 first SCENARIOS

Business-as-Usual (BAU), Energy

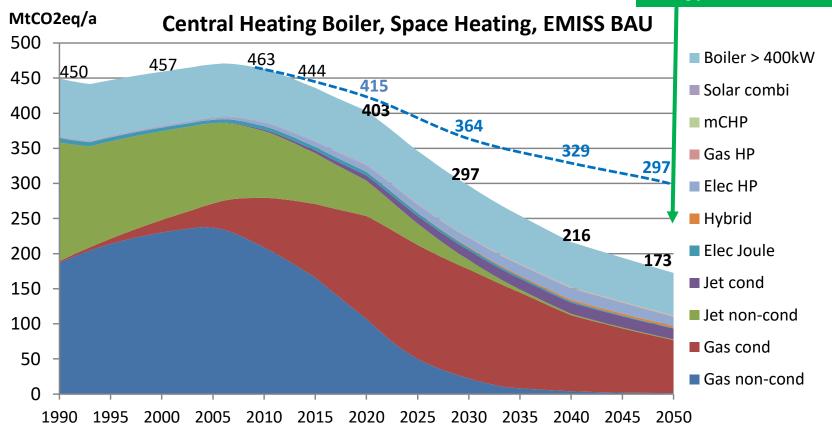
Dotted blue line is primary energy use without current regulation (BAU0).

156 Twh_{prim} in 2030 saving from 2013 measures

With new measures (ECO), Energy

Dotted blue line is BAU. PEF for all years 2.1 (to be corrected when consensual projections will be available).

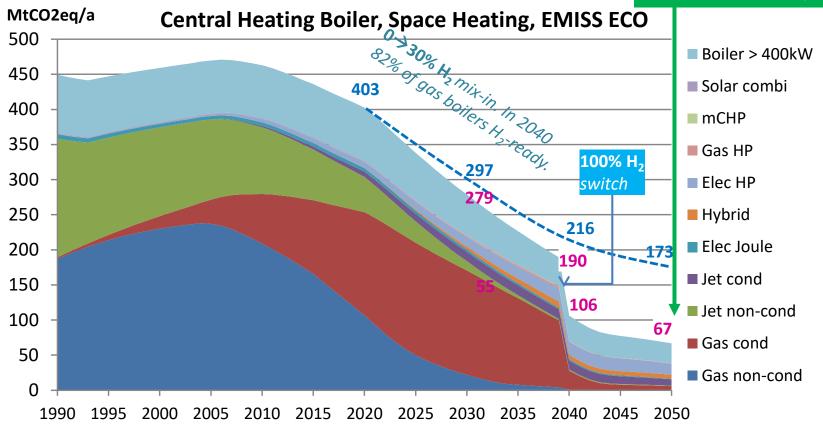
extra saving from new measures \rightarrow 234 TWh TWh primary/a **Central Heating Boiler, Space Heating, NRG ECO** 2500 Boiler > 400kW Solar combi **207**U 2000 mCHP 1610 Gas HP 1500 Elec HP 1259 Hybrid 1004 Elec Joule 1000 Jet cond Jet non-cond 500 Gas cond Gas non-cond 0 2010 2015 2020 2025 2030 2000 2005 2035 2040 1990 1995 2045 2050


78 TWh_{prim} in 2030

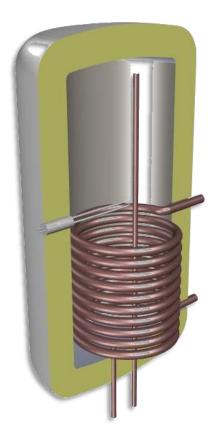
Business-as-Usual (BAU), GHG Emissions

Dedicated & Combi together. Dotted blue line is primary energy use without current regulation.

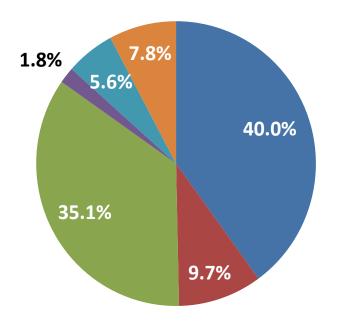
124 Mt CO₂ in 2030 (-42%) saving from 2013 measures



With new measures (ECO), GHG emissions


Dedicated & Combi together. Dotted line is BAU. PEF for all years 2.1 (to be corrected when consensual projections will be available).

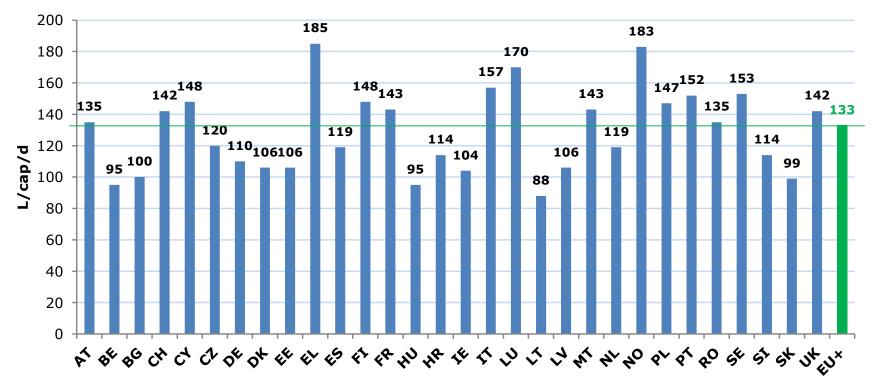
106 MtCO₂ in 2050 extra saving from new measures \rightarrow 230 Mt (-77%)


Water Heaters

dedicated

EU28 primary energy end use households for water heating 2015 Total ~2115 PJ=50.5 Mtoe (VHK on basis Eurostat 2017)

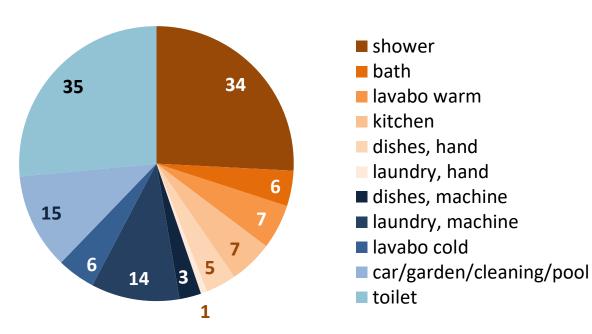
Electricity (1 GWh=9 TJ, pef 2.5)


- Derived heat
- Gas (32.8%) & LPG (2.3%)
- ■Coal (1 kt= 28.5 kt)
- Heating oil (1 kt=40-42 TJ)
- Renewables (35% solar, 60% biomass)

Total water consumption 133 L/cap

Range 88-185 L (residential). Trend: Declining (due to efficient appliances & toilets, baths → showers)

Water consumption per country (2012-2017), in Litres/capita/day



Hot water consumption 60 L/cap

Trend: Declining (baths -> showers, saving shower-heads & taps)

Average EU⁺ water consumption per capita, 133 L/capita/day, of which 60 L warm @ 40°C

<u>Non-residential hot water use adds 12 L \rightarrow Total 72 Litres @40°C per capita</u>

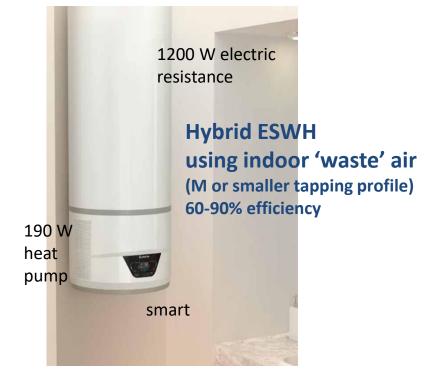
Still large innovation potential

But at a price

TECHNICAL

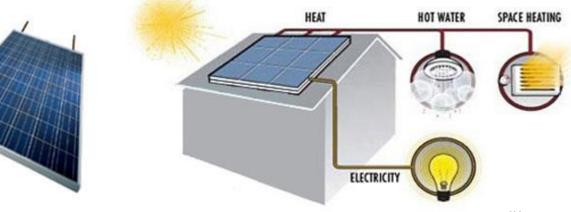
4

Fuel Cell Water Heater Efficiency >200% new calculation proposal with CC=2.65 for electric output. Input 2.48 kW (NCV)--> output 1.5 kW electric (AC) + 0.54 kW useful thermal



Stratified charge storage tank Hot Water Capacity x 3 compared to normal indirect cylinder.

Condensing Gasfired Instantaneous WH: >90% ErP water heating efficiency (XXL tapping profile)= 9% better than a good condensing combi-boiler



Shower heat recovery >50% saving Tube-in-tube Heat exchange between

waste water and incoming warm water

PVT Solar panels (heat & PV-electric)

2021 Label factor & icon

Not for mix-in but **100%** = **100%** carbon-neutral (Green **H**₂, ex-ante CCU possibly in the interim)

Verification tolerances 2021: Gas instantaneous can be stricter; storage-based products are possibly critical. New formula for NOx? Follow up needed

Labelling: Adjust class limits of electric WHs for new PEF 2.1. A+ etc. class limits more ambitious for tapping patterns S and M Simplified solar (installer) label class calculation Otherwise labelling scheme is the same

Ecodesign: New technology-specific limits (see next slide)

<u>Other:</u>

Follow-up discussions & study needed Storage tank standing heat loss: EN 12897:2016 and prEN 15322:2016;
EN 12977-3 might be used only for solar storage tanks.
Energy Label 3XL/4XL: No double testing needed
NOx limits: Correction factors on NOx-limits for 3rd family gases
Sound power limits heat pump: To be better defined
OVERALL: Dedicated WH and Combi in one water heating regulation.
???: Solar PVT and PV, 'Hybrid' ESWH, Heat recovery, Boiling water function

Ecodesign: New technology-specific limits (proposal)

					Storage-	Instant-	НР
Water heating energy efficiency	EIWH	ESWH	GIWH	GSWH	COMBI	COMBI	WH
per tapping profile [1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]
3XS-XXS-XS-S tapping profiles	42%	38%	55%	45%	45%	72%	60%
M tapping profile	45%	43%	75%	56%	56%	75%	105%
L tapping profile	45%	44%	80%	67%	68%	82%	114%
XL tapping profile	45%	45%	85%	78%	78%	90%	133%
XXL tapping profile	45%	45%	89%	83%	100%	110%	148%
3XL-4XL	45%	45%	92%	88%	105%	115%	157%

[1]: For oil-fired versions of the GIWH, GSWH and COMBI, multiply the limit values by 0.95

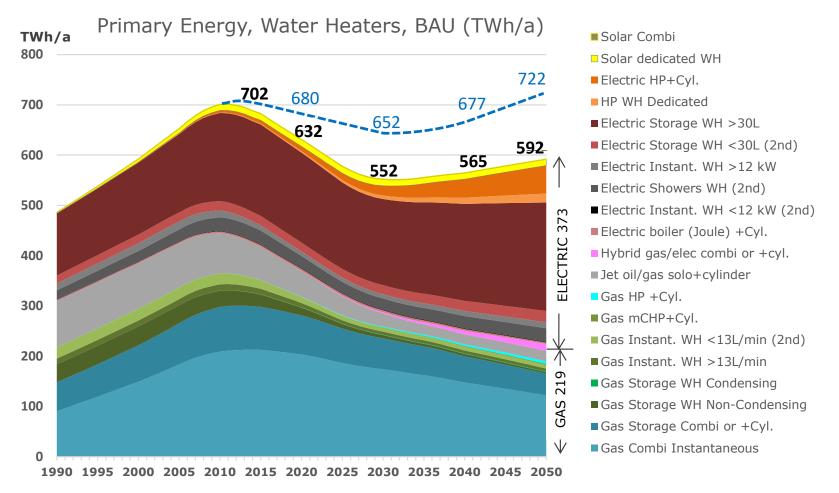
[2]: ELECTRIC INSTANTANEOUS WH: Limits are close to maximum for electronic EIWH, at pef=2.1, according to catalogue values.

[3]: ELECTRIC STORAGE WH: Limits for 3XS-XL derived from pef-corrected current regulation. For XXL/3XL/4XL they are close to maximum.

[4]: GAS INSTANTANEOUS WH: Own assessment. Limits will eliminate (indirectly) pilot flame use as requested..

[5]: GAS STORAGE WHE: Based on best catalogue data.

[6]: STORAGE COMBI: Limits also apply to gas-fired heat pumps (A7/W55) as well as fossil fuel boilers with external indirect cylinder. Limits derived from instant-combi minus storage standing losses

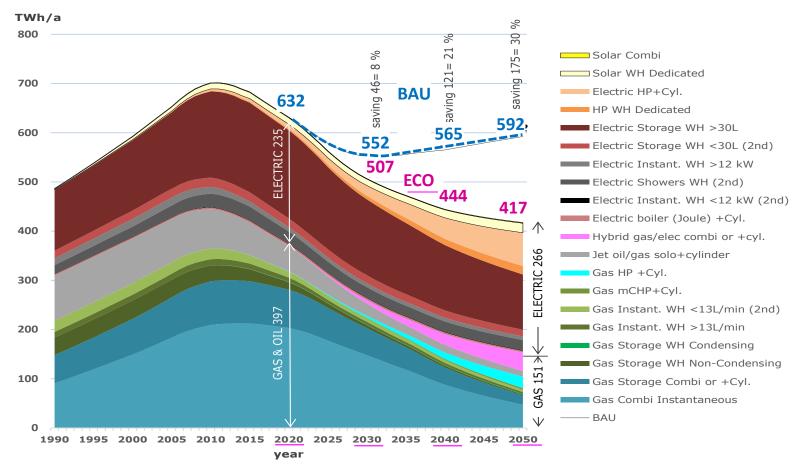

[7]: INSTANTANEOUS COMBI: XL-limit assumes integrated instantaneous PFHRD (PASSIVE FLUE HEAT RECOVERY DEVICE). XXL/3XL/4XL limits assume integrated storage PFHRD (<3L). Example: Intergas Xtreme 36 (XXL, 115% on GCV)

[8]: Monoblock dedicated HEAT PUMP WATER HEATER: Limits based on A7/W55 EN16147. Values derived from catalogue data (mainly Ariston). The S-class value is based on a corrected (downward) value that could be realised by a variation on the Lydos hybrid (currently M with 90% efficiency). Limits also apply to electric heat pumps with indirect cylinder (A7/W55).

first SCENARIOS

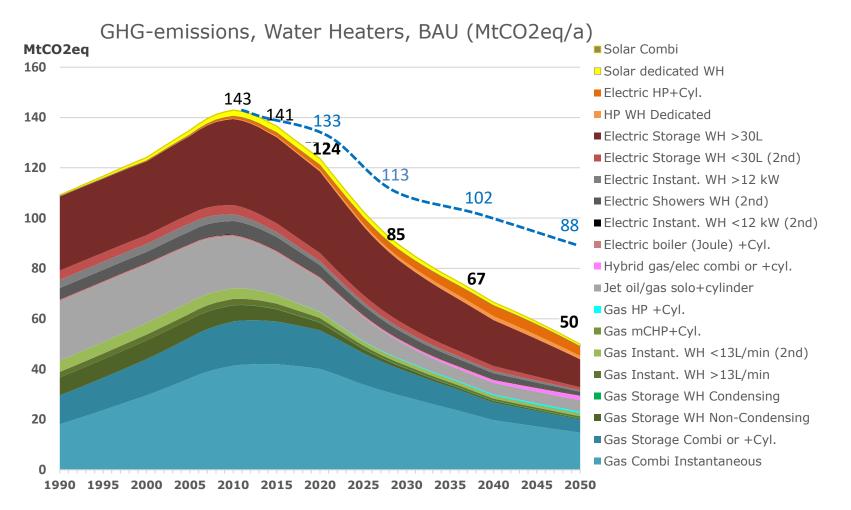
Business-as-Usual (BAU), Energy

Dedicated & Combi together. Dotted line is primary energy use without current regulation (BAU0).



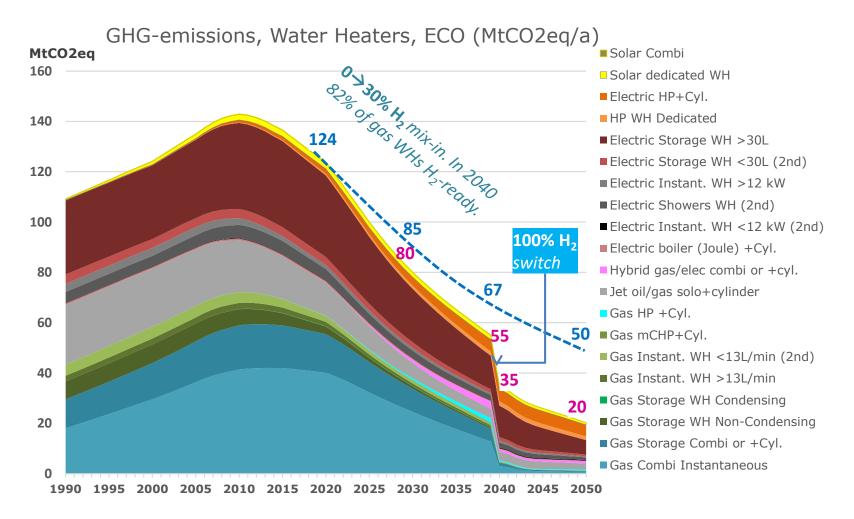
With new measures (ECO), Energy

Dedicated & Combi together. Dotted blue line is BAU. PEF for all years 2.1 (to be corrected when consensual projections will be available).

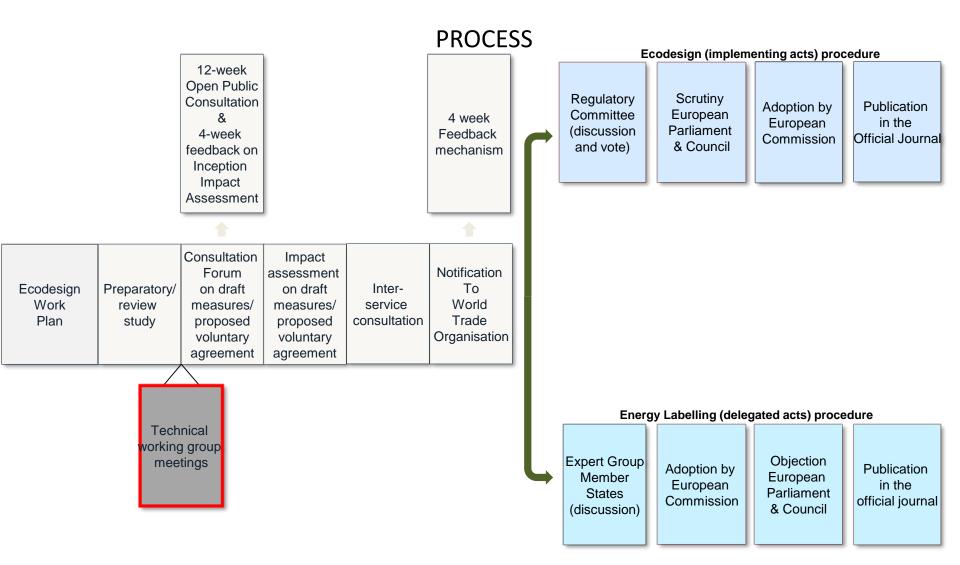

Primairy Energy, Water Heating, ECO (TWh/a)

7 first SCENARIOS

Business-as-Usual (BAU), GHG Emissions


Dedicated & Combi together. Dotted blue line is primary energy use without current regulation.

first SCENARIOS


With new measures (ECO), GHG emissions

Dedicated & Combi together. Dotted line is BAU. PEF for all years 2.1 (to be corrected when consensual projections will be available).

Next step: Technical Working Group meetings

To start now, Next 12-14 months, CF water heaters first, CF space heaters after

Topics technical working group meetings

- 1. Hydrogen and biogas promotion or alternative approaches to achieve the objectives of the Paris agreement
- Temperature regimes and other possible ecodesign or energy labelling measures to boost heat pump/hybrid market penetration in existing buildings
- **3. Streamlined package calculations and ecodesign limits** for all products in the scope, including solar, passive flue heat recovery devices, boiler exemptions, the use of ecodesign requirements as a reliable source for data in other policies (e.g. EPBD)
- 4. Differentiated ecodesign limits per technology for water heaters

Thank you for your attention

CHECK Project websites for news:

www.ecoboiler-review.eu www.ecohotwater-review.eu