
Introduction

Optimal operation of building energy systems is chal-
lenging as there are several stochastic and time-varying 
parameters that affect building energy use. One of 
these parameters is occupant behaviour, which is highly 
stochastic, can change from day to day, and therefore 
is very hard to predict [1]. The occupant behaviour of 
each building is unique, and thus there is no universal 
model which can be embedded in the control system 
of various buildings at their design phase. To cope 
with this highly stochastic parameter, current control 
approaches are usually too conservative to ensure the 
comfort of occupants regardless of their behaviour. An 
example is hot water production, where huge volume 
of hot water with high temperature is produced in 
advance and stored in a tank to make sure enough 
hot water is available whenever it is demanded [2,3].

Another stochastic parameter affecting building opera-
tion is renewable energy. The share of renewable energy 
in the building sector is increasing, and is expected to 
get doubled by 2030 [4]. Due to the volatile nature 
of renewable energy sources, it will also increase the 
complexity of optimal energy management in build-
ings [5]. There are several other stochastic parameters, 
such as weather condition or electric vehicles charging 
that all affect the building energy use. The control logic 
of buildings should properly consider these stochastic 
parameters to guarantee an optimal operation.

Uniqueness of occupant behaviour in each building 
makes it challenging to program a rule-based or model-
based control logic that can be easily transferred to many 
other buildings. Rather than hard programming a rule-
based or model-based control method, a learning ability 
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can be provided to the controller such that it can learn 
and adapt to the specifications of that building and 
maintain an optimal operation. Reinforcement Learning 
(RL) is a method of Machine Learning that can provide 
this learning ability to the controller. RL can continu-
ously learn and adapt to the changes in system such as 
variating weather conditions, volatile renewable energy, 
or stochastic occupants’ behaviour [9].

The aim of this research is to develop a self-learning 
control framework that considers the stochastic hot 
water use behaviour of occupants, and variating solar 
power production, and learns how to optimally operate 
the system to minimize energy usage while preserving 
the comfort and hygiene aspects. Case study energy 
system is the combined space heating and hot water 
production, assisted by Photovoltaic (PV) panels.

The main novelties of the proposed framework are:

Integration of water hygiene: While the pervious 
study by authors [2] followed a simple rule to respect 
hygiene aspect, this study for the first time integrates a 
temperature-based model that estimates the concentra-
tion of Legionella in hot water tank at each time step. 
Estimation of Legionella concentration in real-time 
enables the agent to spend as minimum energy as 
required for maintaining the hygiene aspect.

Investigation on real-world hot water use behaviour: 
In this research, hot water demand of 3 residential 
houses is monitored to assess the performance of agent 
on real-world hot water use behaviour of occupants.

Stochastic off-site training to ensure occupants 
comfort and health: To ensure that agent would 
quickly learn the optimal behaviour with a minimum 
risk of violating comfort and hygiene aspects, an off-site 
training phase is designed in this study. This off-site 
phase integrates a stochastic hot water use model to 
emulate the realistic occupants’ behaviour. Also, it 
includes a variety of climatic conditions and system 
sizes to provide a comprehensive experience to the agent.

The remainder of this paper is organized into four 
sections: Section 2 describes the research methodology, 
section 3 presents the results, and Section 4 concludes 
the paper.

Methodology

Figure 1 shows the components of an RL framework. 
The methodology section describes how each of these 
components are designed.

Environment design

Layout of residential energy system in this study is 
shown in Figure 2. This system uses an air-source heat 
pump to provide hot water in a tank, which is used for 
both hot water production and space heating through 
radiators. PV panels are also connected to the heat 
pump. PV panels are grid-connected, so the surplus 
power can be supplied to the grid. A dynamic model 
of the system is developed in TRNSYS.

Agent design
The agent is developed in Python using Tensorforce 
library [19]. An improved version of Deep Q-Network 
(DQN), known as Double DQN is used as it is proved 
to solve the issue of overestimation by typical DQN. 
Specifications of agent are provided in Table 1.

State, action and reward space
Parameters included in the state are presented in 
Table 2. Each parameter is a vector including the value 

Figure 1. Interaction of agent and environment in 
Reinforcement Learning. [18]

Parameter Length of 
look-back 

vector

Hot water demand 6

Demand ratio -

Outdoor air temperature (°C) 1

Indoor air temperature (°C) 3

PV power (kW) 6

Heat pump outlet temperature (°C) 1

Legionella concentration (CFU/L) 1

Tank temperature (°C) 1

Hour of day -

Day of week -

Parameter Value

Learning rate 0.003

Batch size 24

Update frequency 4

Memory 48×168

Discount factor 0.9

Table 1. Selected parameters for the agent.

Table 2. Parameters included in the state vector.
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of that parameter during one or multiple previous 
hours. The demand ratio is the ratio of total hot 
water demand of the current day until the current 
hour, to the total demand of the previous day. Hour 
of day is a value between 1-24 indicating what is the 
upcoming hour of day. Day of week, similarly, indi-
cates the current day as a value between 1-7, where 
1 represents Monday. The values are normalized to a 
value between 0 to 1.

The agent has four possible actions: Turning ON the 
heat pump, Turning OFF the heat pump, selecting 
the indoor air temperature setpoint of 21°C (as an 
energy-saving setpoint) or 23°C (as an energy-storing 
setpoint). Based on the selected indoor air tempera-
ture setpoint by the agent, a two-point controller with 
a dead-band of 2°C tries to maintain the specified 
setpoint during the next hour.

Reward function includes 4 different terms. An 
energy term to penalize the agent for net energy use, 
hot water comfort term to penalize the agent if a hot 
water demand is supplied with a temperature less than 
40°C, which is considered as the lower limit of comfort 

for hot water uses [2], space heating comfort term to 
penalize the agent if the indoor air temperature is out 
of the comfort region of 20°C-24°C, and a hygiene 
term if the estimated concentration of Legionella is 
above the maximum threshold of 500×10³ CFU/L 
recommended for residential houses [20]. Equations 
1-4 shows the formulation of energy, hot water 
comfort, space heating comfort, and hygiene terms.

Renergy = −a × |HPpower− PVpower |	 (1)

if Ttank ≥ 40: RDHWcomfort = 0 else −b	 (2)

if 20 ≤ Tindoor ≤ 24: RIndoorcomfort = 0 else −c	 (3)

if Conc ≤ Concmax, RHygiene = 0 else −d	 (4)

Where HPpower and PVpower are the power use of heat 
pump and power production of PV panels (kW), Ttank 
and Tindoor are the tank and indoor air temperature, Conc 
and Concmax are the current and maximum concentra-
tion of Legionella in the tank (CFU/L), Renergy, RDHWcomfort, 
RIndoorcomfort and RHygiene·a,b,c and d are set to 1, 12, 10 and 
10 determined by a sensitivity analysis. The total reward 
is therefore the summation of all these terms.

Figure 2. Layout of solar-assisted space heating and hot water production system.
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Monitoring campaign

To perform a realistic test without disturbing the 
occupants, hot water use behaviour of people was mon-
itored, and the collected data were used in TRNSYS 
simulation. For the current framework, as shown in 
Figure 2, only one single sensor at the tank outlet 
is enough to measure the hot water demand. In this 
study, to collect a comprehensive dataset, the hot and 
cold-water demand was monitored at all the end uses 
as shown in Figure 3.

Training procedure
Training and deployment stages are shown in Figure 4. 
To ensure occupants’ comfort and health, first, the 
agent is trained on an off-site training process. In this 
stage, a virtual environment is provided to enable the 
agent to gain enough experience before being imple-
mented on the target house. In this stage, a hot water 
use model [21] is used to emulate the hot water use 

Figure 3. Flow and temperature sensor on a faucet.

Figure 4. Training and deployment process.
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behaviour of occupants and the agent is trained for 
10 years. Next, the agent is trained on the target house 
for 16 weeks. The aim of training on the target house 
is to let the agent adapt to the specific characteristics 
of the target house, such as occupants’ behaviour, 
systems sizes, or weather conditions. To simulate the 
target house, in on-site training stage the collected 
hot water use data, and also the weather data collected 
from a weather station near the case study is used. After 
the on-site training on the target house, the training 
process can be stopped and the agent starts the deploy-
ment stage, in which agent is no longer learning but 
only controlling the system. Duration of deployment 
phase is 4 weeks.

Results

Figure 5 shows the control signal, PV power produc-
tion, and tank temperature over the deployment stage 
on three case studies. The deployment stage of houses 
1 and 2 is during December, while the deployment 
stage of house 3 is during July. Therefore, the PV 
power production of the third case study is higher 
than others. In all of the case studies, it can be seen 
that the agent is trying to adapt the control signal to 
the PV power production and reduce the power use 
from the grid, by turning ON the heat pump more 
frequently during the hours of PV power production. 
This adaptation can be seen very well on house 3, 
where PV power production is significantly higher and 
the agent tries to turn ON heat pump only when there 
is a PV power production. In all of the case studies, the 
agent has learned how to keep tank temperature above 
40°C to respect the comfort of occupants. It shows 
that agent could successfully learn and adapt to the 
occupants’ behaviour, because none of the demands 
reduced the tank temperature below 40°C.

To better highlight how RL could better exploit solar 
power production, the contribution of PV power 
production in the total power use of the heat pump 
is shown in Figure 6. Two baseline scenarios are also 

Figure 5. Control signal versus PV power production 
and tank temperature.

Figure 6. Contribution of PV power production in 
power consumption of heat pump.
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modelled including RC (Conventional rule-based with 
60°C setpoint for tank temperature and 22°C setpoint 
for indoor air) and RE (Energy-saving rule-based with 
50°C setpoint for tank temperature and 22°C setpoint 
for indoor air). As can be seen, in all the case studies RL 
has used a higher contribution of PV power, compared 
to the RC and RE. In case of house 3, the contribution 
of PV power production is much higher than RC and 
RE, which is the why in this house the energy saving 
is much higher than other houses. It shows that a sig-
nificant advantage of the proposed RL framework is to 
learn how to adapt the operation to the PV power pro-
duction, and therefore potential energy-saving increases 
in regions with higher solar radiation.

RL has provided an energy saving of 7% to 22% 
compared to the RE framework.

Conclusion

This research proposed a model-free RL control 
framework that can learn the hot water use behaviour 
of occupants and PV power production, and accord-
ingly adapt the system operation to meet the comfort 
requirements with minimum energy use. Different 
from previous studies, where RL is supposed to make a 
balance between energy use and comfort, in this study 

RL tries to make a balance between energy use, comfort, 
and hygiene. Inclusion of hygiene aspect is very crucial 
to ensure the health of occupants. Real-world hot water 
use data is monitored in three residential case studies 
and used to evaluate the performance of the proposed 
framework over the realistic behaviour of occupants. 
The RL framework is compared with two rule-based 
scenarios of RC and RE.

Results indicate the proposed framework could provide 
a significant energy saving, mainly by learning how to 
get the best use of PV power production. Therefore, 
the energy-saving potential is expected to be even more 
in regions with higher solar radiation than Switzerland. 
Also, the agent has successfully learned how to respect 
the comfort of occupants and water hygiene, so the 
potential energy saving is not with the cost of violating 
occupants’ comfort or health. 
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