
Introduction

District heating (DH) plays a vital role for the 
operation of building energy supply systems, which 

accounted for 35% of global final energy use and 
38% of energy-related CO₂ emissions [1]. However, 
existing DH networks in many cold climates still use 
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rather high supply temperatures, such as 75°C or above 
[2]. In the face of green energy initiatives, increasing 
shares of low-energy buildings, and case examples in 
mild climates, there is a pressing need to transform 
the existing DH networks toward low-temperature 
DH (LTDH).

Digitalization and the overall transition towards 
smart energy systems and cities are placing higher 
requirements on integration, communication, and 
cooperation with end-users (buildings) connected to 
such LTDH networks. As a result, future generations 
(4th and 5th) of LTDH networks will feature low 
operating temperatures, and greater integration with 
the end-users (buildings) and building-sized renewa-
bles. However, how to operate such integrations still 
rely fundamentally on a thorough understandings of 
heating loads.

Digital solutions for measuring and controlling the 
network will allow for higher degrees of system optimi-
zation with intermittent renewables and heat pumps. 
This means that short-term predictions of heating loads 
are essential. But updating all the legacy monitoring 
facilities is a very costly and lengthy process. There is 
still a pressing need for more knowledge about what 
tools are available, and how well these methods can 
be utilized for load predictions in LTDH applications. 
At the same time, there is still room for improvement 
and solutions that can work on top of the existing 
DH systems, using existing metering data, during this 
transition period.

 In the studies investigating DH load predictions, a 
great amount of methods are based on linear regres-
sion models, due to the strong linear relationships of 
heating load with respect to outdoor temperature. 
These existing methods commonly have not taken 
full advantage of using data-driven approaches, such 
as emerging machine learning (ML) models to perform 
such predictions. Even within those limited publica-
tions in the respective areas, it is still not clear what are 
the key advantages of using such ML approaches, and 
to what extent the accuracy levels can be quantified, 
given limited dataset inputs. This study provides a 
practice of the above raised challenges.

In this work, ML methods was developed to forecast 
the day-ahead heating energy demand of DH end-users 
in hourly resolution, by using existing metering data 
for DH end-users and weather data. The importance 
of historical data was investigated – in particular the 
importance of including historical hourly heating loads 
as input to the forecasting model. Additionally, the 

impact of different lengths of the historical input data 
was studied. The feasibility of such models, and their 
accuracy, are evaluated using data from a live use-case 
in Scandinavian environment. A detailed analysis 
of the accuracy levels of short-term load prediction 
methods are in focus.

Methodology

The study applies combinations of a two-step approach:

Step 1. A thorough understanding of the DH network 
and building load on annual basis, namely load profiles. 
This provides an overall view and boundary conditions 
of DH networks.

Step 2. Based on the definitions of DH load profile, 
day-ahead prediction models are developed. The model 
is rooted as an Artificial Neural Network (ANN) 
model, varying the input parameters, and trained and 
evaluated using the DH dataset.

To measure and evaluate the performance of the 
models, the mean squared error (MSE), and the mean 
absolute error (MAE), were both recorded for each 
model after training had been completed, using the 
2019 test data (that had not been seen by the models 
during training).

Data inventory
The heating load was measured and collected for 20 
separate nursing homes in Scandinavian climate, all 
located in the city of Trondheim, Norway. All of these 
buildings are connected to the same DH network, 
and the measurements were obtained directly from 
the measuring equipment of the network operator. 
The data contains the hourly heating loads for each 
of the buildings, spanning the entire time period from 
January 1, 2016, to December 31, 2019, obtained 
from the energy monitoring platform of Trondheim 
Municipality [9].

For the model construction and evaluation, the average 
heating load per square meter (W/m²) was calculated 
across the 20 buildings for each hour. The data were 
supplemented with hourly outdoor temperature meas-
urements obtained from the Norwegian meteorological 
station [10] in Trondheim, for the corresponding period.

Load profile development
The load profile was identified using an energy sig-
nature (ES) curve in the study. This method has been 
widely employed for planning and sizing purposes. An 
ES curve consists of a temperature dependent part, and 
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a temperature independent part, which are divided by 
changing point temperature (CPT) or heating effective 
temperature, defined as:

If Tt ≤ CPT,    P(Tt) = p₁· Tt + p₂ + ε	 (1)

If Tt > CPT,    P(Tt) = p₁· Tt + p₂ + ε ≈ p₂	 (2)

where Tt is the outdoor temperature at time t, p1 and 
p2 are the coefficients of each ES curve model, and 
ε is the residual error. The heating demand follows 
the linear growth under the slope of p1. Below the 
changing point temperature, it is the outdoor tem-
perature dependent part and above the changing point 
temperature, it is the outdoor temperature independent 
part, when most of the heating needs go to domestic 
hot water (DHW) use.

For DH network monitoring, the load data are 
commonly aggregated as a combination of space 
heating and domestic hot water usage. Therefore, in 
the energy signature analysis, DHW load is extrapo-
lated based on the existing studies [11], which has 
reported as a representative DHW profile for the given 
climate and resident types.

For modelling boundary conditions, daily heating 
degree hours (HDH) is calculated as the daily sum-
mation of the difference between balance temperature 
and hourly outdoor temperature, see below:

𝐻𝐻𝐻𝐻𝐻𝐻 = ∑ max⁡(0,𝑇𝑇𝑏𝑏𝑏𝑏𝑏𝑏 − 𝑇𝑇𝑡𝑡
𝑡𝑡𝑜𝑜+23

𝑡𝑡=𝑡𝑡𝑜𝑜
) 	 (3)

where to is the first hour of the day, the heating balance 
temperature tbal is assumed at 15°C and negative 
summands are set to zero. From this, high-heating 
season, mild-heating seasons and non-heating seasons 
can be identified in the ES curve.

The day-ahead prediction models
In this study, short-term prediction is defined as 
24-hours (day-ahead) time horizon. ANN-based 
models were developed to predict the short-term 
heating load, starting from a given hour, for each hour 
of the following 24-hour period. As mentioned, this 
serves as a decision-supporting tool for the operation 
purposes in future LTDH transitions. All of these 
models used as input the forecasted outdoor tempera-
ture for the corresponding 24-hour period. To study 
the importance of historical data, and the performance 
impact of different measuring scenarios, nine differ-
entiated ANN models were created and compared.

The models differed in what additional input data were 
used. One of them used no additional inputs, i.e., only 
the forecasted outdoor temperature. The other eight 
models were split into two main categories:

•	 Half of them were additionally supplied with the 
historical outdoor temperature,

•	 The other half were supplied, in addition to that, 
with the historical measured heating load.

For both cases, the historical data were given in 
the same hourly resolution. Within each category, 
the models were further differentiated based on the 
number of hours of historical data stretched back: 12, 
24, 48, or 72 hours.

These models had one input layer (the number 
of inputs varied between the models), one hidden 
Rectified Linear Unit (ReLU) layer with 64 nodes 
(this number was determined through hyperparam-
eter search), and one output layer. All the layers were 
densely connected. Mean squared error (MSE) was 
used as the loss function, and Adam was used for the 
parameter optimization, with the maximum number 
of epochs set to 100.

Mathematical description of the models
The logic of the developed model is presented in 
Figure 1. Let Qt and Tt represent the measured heating 
load, and the measured outdoor temperature, at hour t, 
respectively; and let θt,s and τt,s represent the predicted 
heating load, and the forecasted outdoor temperature, 
made at hour t for hour t + s (defined for s = 1,…,24), 
respectively. Let K be a parameter representing the 
number of hours of historical measured data to be 
used as input for the model. Introduce the shorthand 
notation as,

θt = (θt,1, … , θt,24)	 (4)

τt = (τt,1, … , τt,24)	 (5)

Qt,K = (Qt−K+1, … , Qt)	 (6)

Tt,K = (Tt−K+1, … , Tt)	 (7)

θt, Qt,K, τt, and Tt,K represent, at the time instance t, 
the predicted heating load for the following 24 hours, 
the historical heating load for the preceding K hours 
(including t), the forecasted outdoor temperature for 
the following 24 hours, and the historical outdoor 
temperature for the preceding T hours (including t), 
respectively.
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Each ANN model can then be expressed as either the 
function

θt = fK(τt, Tt,K)	 (8)

if historical heating load is not an input to the model, 
or as

θt = gK(τt, Tt,K, Qt,K)	 (9)

if historical heating load is supplied, where fK and gK 
are abstract representations of our ANN models, and 
the parameter K takes either of the values 0, 12, 24, 
48, and 72 (hours).

Training and evaluation of the models
As mentioned above, the different models were trained 
and evaluated using the same dataset, introduced in 
Section “Data inventory”. The dataset was created 
from the original data by first considering every 
possible consecutive 24-hour window of both the 
outdoor temperature and the heating loads, and then 
appending the preceding K-hour window to it, both 
for the outdoor temperature and the heating loads. In 
the cases that did not consider the historical heating 
load, that part of the window was simply discarded. 
Each window is therefore split into input and output, 
according to Figure 1.

The data for the years 2016 and 2017 was used as 
the training set for the ANN, while the data for 2018 
was used as the validation dataset, for the stopping 
criterion of the training. The resulting models were 
evaluated using the data for the entire year of 2019, the 
testing set, to ensure that the models were evaluated 
on a whole year of data.

Note that the model was evaluated using the actual 
measured outdoor temperature as the outdoor 
temperature forecast input. To improve statistical 
reliability, each model was trained from scratch ten 
times (using the same training data, but randomly 
initializing the weights each time), and the averages of 
these performance measures across the ten iterations 
were recorded.

Results
ES and load profile characteristics
Figure 2 shows the ES of the DH network. Around 
12°C was found as the changing point temperature 
for providing a proper piece-wise approximation. It 
is found that outdoor temperature that are above 
the changing point temperature consists of 22.4% 
of heating seasons. Figure 2 also shows that space 
heating loads are less temperature dependent at the 
mild-heating season (constant slope), and these small 
loads can be described by one regression line regardless 
of working hours and non-working hours. 

Tt,K = (Tt–K+1 , ... , Tt)

Qt,K = (Qt–K+1 , ... , Qt)

τt = (τt,1 , ... , τt,24)

θt = (θt,1 , ... , θt,24)

K hours, h T, 24h

DH data set

Data windowData window ... ... ...... Data window

Outdoor temperature, T

Heating load, Q

Figure 1. The logic of short-term prediction model.
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The rest 77.6% of the time the outdoor temperature 
was below the changing point temperature, falls into 
high-heating season. Along the regression lines below 
the changing point temperature, there is a small region 
where non-working hour may need slightly higher 
space heating load than working hour under the same 
outdoor temperature (c.a. 10 – 12°C).

From the linear relationship between specific daily 
space heating and heating degree hours, as dis-
played in Figure 3, it shows the daily space heating 
operation follows the daily heating degree hours, 
without influences from day types or manual false 
operation/intervention. These results are expected, 
given the rather high-temperature/conventional 
DH networks in the study. This also provides the 
boundary conditions that the day-ahead predictions 

will be constrained by the operation scenarios, instead 
of allowing the network temperature drift freely with 
load variations.

Accuracy levels of day-ahead prediction
The evaluation errors of the models are shown in 
Table 1. Recall that the evaluation of the models was 
performed on the dataset covering the entire year of 
2019, and that this data had not been previously seen 
by the model (during the training stage). The results 
show a clear difference between the models gK that 
use the historical load data, and the models fK that do 
not. In particular, the impact of including historical 
outdoor temperature data, but not historical load, 
as input to the model is relatively small, even when 
longer periods of historical temperature data are used, 
compared to also including the historical load data.

Figure 2. Energy signature (ES) curve for the district heating (DH) load profile.

Figure 3. Load characteristics given the whole heating season, presented by heating degree hours (HDH).
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Discussion

A significant difference can be observed between the 
models that use both historical heating loads and 
outdoor temperature as inputs, and the models that 
only use historical outdoor temperature. This differ-
ence is especially significant during the mild-heating 
season, when the heating load is dominated by 
domestic hot water. This is likely due to the relatively 
weak relationship between outdoor temperature and 
the total heating load during that period, compared to 
the high-heating season, when space heating demand 
is the dominant component. Another reason could 
be due to thermal inertia and storage effects of the 
buildings, as well as suboptimal control of the heating 
loads, in which case the historical heating loads could 
be useful to model.

This evidence provides a basis for how future LTDH 
should be operated under different climate conditions, 
when heating loads fall more into the mild-heating 
season regime, with perhaps only peaks fall into the 
high-heating season regime. These differences are 
also evident in Table 1, which shows the average 
performance over the whole-year period. The results 

demonstrate the importance of making historical 
heating load available to heating load prediction 
models. Yet, while historical hourly outdoor tempera-
ture is often publicly available, historical heating loads 
are in many cases only available with large delays or 
low temporal resolution, if at all. The results addition-
ally demonstrate the importance of using historical 
data from longer time periods, although they seem to 
suggest diminishing returns beyond the data for the 
previous 24 hours. This optimal cut-off period will 
likely differ between different building types, due to 
differences in thermal inertia.

It should be noted that the performance of the models 
was evaluated using the actual measured outdoor tem-
perature as the forecasted outdoor temperature for the 
following 24-hour prediction. In practical applica-
tions, this forecast would typically be inaccurate. Such 
inaccuracies would lead to lower performance than 
observed in this study. As such, it is important that 
the base model is as accurate as possible, to reduce the 
propagation of such inaccuracies within the model.

Conclusions

This study demonstrates that, although there is a 
strong linear relationship between outdoor tempera-
ture and heating load, it is still important to include 
historical heating loads as an input for prediction of 
future heating loads. Accuracy levels are quantified by 
using ANN models with input parameter variations. 
Furthermore, the results show that it is important 
to include historical data from at least the preceding 
24 hours, but suggest diminishing returns of including 
data much further back than that. The models devel-
oped in this study were evaluated on actual measured 
data from a live use-case, demonstrating the practical 
feasibility of such prediction models. 

Model 
parameter

Mean squared 
error (MSE)

Mean absolute 
error (MAE)

No historical data, i.e., fo

K = 0 0.0824 0.2275

Only historical outdoor temperature, i.e., fK

K = 12 0.0790 0.2213

K = 24 0.0770 0.2183

K = 48 0.0753 0.2161

K = 72 0.0698 0.2086

Including historical heating load, i.e., gK

K = 12 0.0307 0.1299

K = 24 0.0219 0.1106

K = 48 0.0231 0.1133

K = 72 0.0221 0.1112

Table 1. Performance measures for the models, evaluated 
on the testing set of 2019.
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